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Dental panoramic radiographs are not only a highly valuable exam but also a versa-
tile one. They can be used to diagnose periodontal bone loss, lesions, cysts, and tu-
mors, as well as estimate the age and biological sex of the patient. The works that
use deep learning to determine such conditions in panoramic radiographs are based
on supervised approaches that require manual annotation of each attribute and con-
dition considered. However, manual annotation of radiographs is demanding, as it
requires qualified labor and is, consequently, expensive. This work seeks to overcome
this difficulty by exploring the Human-in-the-Loop concept, a semi-supervised learn-
ing technique that expedites the labeling process through an interaction between hu-
man experts and machine learning models. To support this approach, special focus
was given to teeth, as they are the main objects of attention and reference points for
radiologists when reading panoramic radiographs. As a result, a dataset for tooth
instance segmentation of panoramic radiographs was produced: the O2PR dataset,
containing 4,000 images. The remaining data of work consists of 4,795 radiographs
in the Raw Panoramic Radiographs (RPR) dataset, with images in their crude format,
and the Textual Report Panoramic Radiographs (TRPR) dataset, containing 8,029 pairs
of radiograph images and textual reports. These groups of data comprise the most
extensive dataset in the literature. Starting from these datasets, we classify thirteen
dental conditions in the tooth or its surroundings. To classify all the considered con-
ditions, a holistic approach was necessary. First, using the labeled radiographs of the
O2PR dataset, we trained an instance segmentation neural network to pseudolabel
the teeth in the unlabeled radiographs. Subsequently, all tooth images were cropped
to facilitate the classification of dental conditions. The O2PR and RPR datasets do not
include textual reports, making it impossible to generate labels for training or evaluat-
ing these images for dental conditions. Instead, the tooth crops from these datasets
were used to pre-train Vision Transformers (which were later employed as classifi-
cation networks for dental conditions) through a self-supervised learning technique
called Masked Autoencoders. This approach proved effective as it allowed the use of
unlabeled data to improve performance. The label extraction procedure follows a dif-
ferent branch. We explored the API of a Large Language Model, GPT-4, to avoid the
pure manual labeling of the dental conditions. The goal of using it was to identify the
noun phrases from the textual reports to find the dental conditions. Later, a heuristic
associated each tooth present in the report sentences with all the dental conditions
of the same sentence. We leverage the pretrained Vision Transformer to train several
dental condition classification models. Encouragingly, the results consistently met or
surpassed the baseline metrics for the Matthews correlation coefficient. A compari-
son of the proposed solution with human practitioners, supported by statistical analy-
sis, highlighted its effectiveness and performance limitations; based on the degree of
agreement among specialists, the solution demonstrated an accuracy level compara-
ble to that of a junior specialist.
Keywords: deep learning; dental panoramic radiographs; instance segmentation mod-
els; large language models;
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RESUMO

As radiografias panorâmicas dentárias não são apenas exames altamente valiosos, mas
também versáteis. Elas podem ser utilizadas para diagnosticar perda óssea periodontal,
lesões, cistos e tumores, além de estimar a idade e o sexo biológico do paciente. Os
trabalhos que aplicam deep learning para determinar essas condições em radiografias
panorâmicas se baseiam em abordagens supervisionadas que exigem a anotação manual de
cada atributo e condição considerada. No entanto, a anotação manual dessas radiografias
é exigente, pois demanda mão de obra qualificada, sendo, consequentemente, cara. Este
trabalho busca superar essa dificuldade ao explorar o conceito de Human-in-the-Loop,
uma técnica de aprendizado semi-supervisionado que acelera o processo de rotulagem
por meio de uma interação entre especialistas humanos e modelos de aprendizado de
máquina.

Para apoiar essa abordagem, deu-se foco especial aos dentes, por serem os principais
objetos de atenção e pontos de referência para os radiologistas ao interpretar radiografias
panorâmicas. Como resultado, foi produzido um conjunto de dados para segmentação
de instâncias de dentes em radiografias panorâmicas: o conjunto O2PR, contendo 4.000
imagens. Os demais dados do trabalho incluem 4.795 radiografias no conjunto Raw
Panoramic Radiographs (RPR), com imagens em formato bruto, e o conjunto Textual
Report Panoramic Radiographs (TRPR), contendo 8.029 pares de imagens de radiografias
e relatórios textuais. Esses grupos de dados compõem o maior conjunto de dados da
literatura. Com base nesses conjuntos, classificamos treze condições dentárias presentes
nos dentes ou em seus arredores.

Para classificar todas as condições consideradas, foi necessária uma abordagem holís-
tica. Primeiro, utilizamos as radiografias anotadas do conjunto O2PR para treinar uma
rede neural de segmentação de instâncias, a fim de pseudo-rotular os dentes nas radio-
grafias não anotadas. Em seguida, todas as imagens dos dentes foram recortadas para
facilitar a classificação das condições dentárias. Os conjuntos O2PR e RPR não incluem
relatórios textuais, impossibilitando a geração de rótulos para treinamento ou avaliação
dessas imagens quanto a condições dentárias. Em vez disso, os recortes de dentes desses
conjuntos foram usados para pré-treinar Vision Transformers (que posteriormente foram
empregados como redes de classificação para as condições dentárias) por meio de uma
técnica de aprendizado autossupervisionado chamada Masked Autoencoders. Essa abor-
dagem se mostrou eficaz, pois permitiu o uso de dados não anotados para melhorar o
desempenho.

O procedimento de extração de rótulos segue uma linha diferente. Exploramos a
API de um Grande Modelo de Linguagem, o GPT-4, para evitar a rotulagem puramente
manual das condições dentárias. O objetivo de sua utilização foi identificar os sintagmas
nominais nos relatórios textuais para encontrar as condições dentárias. Em seguida,
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xii RESUMO

uma heurística associou cada dente mencionado nas sentenças do relatório a todas as
condições dentárias presentes na mesma sentença. Aproveitamos o Vision Transformer
pré-treinado para treinar vários modelos de classificação de condições dentárias. De
forma encorajadora, os resultados consistentemente atingiram ou superaram as métricas
de referência para o coeficiente de correlação de Matthews. A comparação da solução
proposta com profissionais humanos, respaldada por análise estatística, destacou sua
eficácia e limitações de desempenho; com base no grau de concordância entre especialistas,
a solução demonstrou um nível de precisão comparável ao de um especialista júnior.

Palavras-chave: deep learning; radiografias panorâmicas dentárias; modelos de seg-
mentação por instância; grande modelos de linguagem;



ABSTRACT

Dental panoramic radiographs are not only a highly valuable exam but also a versa-
tile one. They can be used to diagnose periodontal bone loss, lesions, cysts, and tumors,
as well as estimate the age and biological sex of the patient. The works that use deep
learning to determine such conditions in panoramic radiographs are based on supervised
approaches that require manual annotation of each attribute and condition considered.
However, manual annotation of radiographs is demanding, as it requires qualified labor
and is, consequently, expensive. This work seeks to overcome this difficulty by exploring
the Human-in-the-Loop concept, a semi-supervised learning technique that expedites the
labeling process through an interaction between human experts and machine learning
models. To support this approach, special focus was given to teeth, as they are the
main objects of attention and reference points for radiologists when reading panoramic
radiographs. As a result, a dataset for tooth instance segmentation of panoramic ra-
diographs was produced: the O2PR dataset, containing 4,000 images. The remaining
data of work consists of 4,795 radiographs in the Raw Panoramic Radiographs (RPR)
dataset, with images in their crude format, and the Textual Report Panoramic Radio-
graphs (TRPR) dataset, containing 8,029 pairs of radiograph images and textual reports.
These groups of data comprise the most extensive dataset in the literature. Starting from
these datasets, we classify thirteen dental conditions in the tooth or its surroundings. To
classify all the considered conditions, a holistic approach was necessary. First, using the
labeled radiographs of the O2PR dataset, we trained an instance segmentation neural
network to pseudolabel the teeth in the unlabeled radiographs. Subsequently, all tooth
images were cropped to facilitate the classification of dental conditions. The O2PR and
RPR datasets do not include textual reports, making it impossible to generate labels
for training or evaluating these images for dental conditions. Instead, the tooth crops
from these datasets were used to pre-train Vision Transformers (which were later em-
ployed as classification networks for dental conditions) through a self-supervised learning
technique called Masked Autoencoders. This approach proved effective as it allowed the
use of unlabeled data to improve performance. The label extraction procedure follows a
different branch. We explored the API of a Large Language Model, GPT-4, to avoid the
pure manual labeling of the dental conditions. The goal of using it was to identify the
noun phrases from the textual reports to find the dental conditions. Later, a heuristic
associated each tooth present in the report sentences with all the dental conditions of
the same sentence. We leverage the pretrained Vision Transformer to train several dental
condition classification models. Encouragingly, the results consistently met or surpassed
the baseline metrics for the Matthews correlation coefficient. A comparison of the pro-
posed solution with human practitioners, supported by statistical analysis, highlighted
its effectiveness and performance limitations; based on the degree of agreement among
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specialists, the solution demonstrated an accuracy level comparable to that of a junior
specialist.

Keywords: deep learning; dental panoramic radiographs; instance segmentation mod-
els; large language models;
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Chapter

1
INTRODUCTION

1.1 OVERVIEW

Oral health is a fundamental component of overall well-being, yet it remains a sig-
nificant public health challenge worldwide. The World Health Organization (WHO)
estimates that nearly 3.5 billion people suffer from oral diseases, making them among the
most common health conditions globally (WHO, 2022). These conditions, which include
tooth decay, periodontal disease, and oral cancer, can affect individuals across all age
groups, leading to pain, discomfort, and social and psychological stress. Poor oral health
not only reduces quality of life, but also contributes to other systemic health problems,
such as cardiovascular disease, diabetes, and respiratory infections (TONETTI et al.,
2017).

The burden of oral diseases is unevenly distributed, with low- and middle-income
countries experiencing the highest prevalence. Limited access to dental care, inadequate
public health policies, and socio-economic disparities contribute to the high rates of un-
treated oral conditions in these regions. Furthermore, lifestyle factors such as poor diet,
tobacco use, and inadequate oral hygiene exacerbate the problem, creating a cycle of
worsening health outcomes. The economic implications are also substantial, as dental
treatments are costly, and the loss of productivity due to oral health problems further
strains healthcare systems and economies.

Addressing the global oral health problem requires advancements in early detection,
diagnosis, and treatment. In this context, medical imaging significantly impacts den-
tistry, allowing specialists to identify problems that might not be visible during a clinical
examination. Modalities such as X-rays, computerized tomography scans, and magnetic
resonance imaging provide detailed views of teeth, bones, and soft tissues (WHITE;
PHAROAH, 2014). These tools enhance the precision of diagnoses and treatments, en-
suring better patient outcomes. Among the current imaging exams, radiographs are the
most common in dentistry (WHITE; PHAROAH, 2014; LANGLAIS; MILLER, 2016),
being requested to identify various pathologies like cavities, periodontal disease, impacted
teeth, and bone infections (CHANG et al., 2020; YÜKSEL et al., 2021) and track the
progress of dental treatments.

1



2 INTRODUCTION

(a) Sample of a periapical radiograph. (b) Sample of a bitewing radiograph.

Figure 1.1: Example of the two most common intraoral radiographs: periapical and
bytewing. They are more focused on the teeth than the panoramic radiograph.

The three most common types of radiographs in dentistry are the periapical, bitew-
ing, and panoramic (JADER et al., 2018). The first two are categorized as intraoral
radiographs because the radiograph film is placed inside the mouth during the image
retrieval. At the same time, the panoramic radiograph is classified as an extraoral radio-
graph because the film or sensor is outside the mouth during the during image capture.
This difference results in more focused and detailed images in the intraoral case than in
the extraoral one. Figures 1.1 (a) and (b) show periapical and bitewing radiograph sam-
ples, respectively. The comparison with the panoramic radiograph of Figure 1.2 evinces
that the intraoral radiographs are the most focused on the teeth. Therefore, periapical
and bitewing radiographs are the common choices of dentists to detect cavities, analyze
restorations, and evaluate the health of the tooth in general. On the other hand, den-
tists use dental panoramic radiographs to diagnose conditions or plan treatments that
do not require fine grained details, such as evaluating wisdom teeth, temporomandibular
joint (TMJ), planning orthodontic treatments or implant placement.

Among the mentioned types of radiographs, the panoramic type is the most chal-
lenging to screen. This difficulty comes not only from the number of visible structures,
but also from the amount of overlap (please refer to Figure 1.2). This characteristic
stems from the method used to acquire the panoramic radiograph. The acquisition of
the panoramic radiograph is done through a specialized imaging technique that provides
a comprehensive view of the entire oral and maxillofacial region. During the procedure,
the patient is positioned in front of a rotating X-ray machine, known as a panoramic
unit. The patient bites down on a bite guide to ensure proper alignment of the teeth
and jaws, as shown in Figure 1.3. As the machine rotates around the patient’s head, a
controlled beam is emitted from an X-ray tube, passing through the patient’s mouth and
surrounding structures. A detector on the opposite side captures the beam that emerges,
creating a continuous image as the unit and the patient move in tandem. As a result,
the imaging system generates a panoramic view that captures various body parts, and
displays the teeth, jaws, temporomandibular joints, and other essential structures in one
two-dimensional image. The resulting radiograph is very versatile; it can assist dental
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Figure 1.2: Sample of a panoramic radiograph and some of structures that are visible
from it. The amount of visible structures makes this radiograph very versatile.

professionals in diagnosing various oral conditions, such as periodontal diseases, injuries,
cysts, and tumors, though it can be challenging to interpret.

This difficulty has inspired many researchers to develop and propose tools to assist
professionals in their work. Ten years ago, most proposed tools relied on unsupervised
learning techniques and exhibited poor performance (JADER et al., 2018). More recently,
deep learning, an Artificial Intelligence (AI) technique, has made a significant impact on
the field. (SILVA et al., 2022). This data-driven technique has achieved significantly
better results compared to previously used methods by employing several layers of neural
networks.

The adjustment of the numerous parameters of neural networks first requires se-
lecting an appropriate deep learning paradigm. Some of the deep learning paradigms
commonly include supervised learning, unsupervised learning, semi-supervised learning,
self-supervised learning, and reinforcement learning. Each one has its own specific ap-
plications and advantages depending on the nature of the data and the problem to be
addressed. For example, supervised learning is often employed for tasks where labeled
data is available, while unsupervised learning is useful for discovering hidden patterns in
unlabeled data. The most successful approaches to developing AI tools in the healthcare
field have utilized deep learning within a supervised learning paradigm. In this paradigm,
the models are trained on labeled datasets where the input data are paired with the cor-
rect output, enabling the AI to learn from examples and make accurate predictions on
new, unseen data. The disadvantage of this approach is that it requires large amounts of
labeled data, which can be time-consuming and expensive to obtain.
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Figure 1.3: A panoramic radiography machine also called panoramic unit. During the
image acquisition, the patient stays in the center of rotation of the X-emitter and recep-
tor. Both rotates in tandem to generate the dental panoramic radiograph (Wikipedia
contributors, 2024).

This work investigates the automatic diagnosis of various tooth conditions using im-
ages and textual reports of dental panoramic radiographs and different deep learning
paradigms (supervised, semi-supervised, and self-supervised). Although many structures
are present on the panoramic radiograph, the teeth still play a unique role, since they
serve as the primary focal points and reference points for radiologists. Beyond radiol-
ogy, teeth hold significance in forensic sciences, particularly for identifying corpses. For
software-based analyses, detecting, classifying, and segmenting teeth are crucial prepro-
cessing steps for further analysis. Motivated by these considerations, this work delves
into the automatic detection, classification, and segmentation of teeth.

1.2 MOTIVATION

Radiographs are priceless resources when diagnosing conditions that can not be an-
alyzed by directly examining the patient. However, radiograph reading requires skilled
labor. A radiologist’s training takes numerous years and demands many skills from the
professional (SILVA et al., 2020). The long shifts in this demanding job increase the risk
of errors (JING; XIE; XING, 2017) Furthermore, there are several types of radiographs,
each with peculiarities and challenges to read (JADER et al., 2018; SILVA et al., 2020).
Developing tools that can aid professionals would be rather beneficial. Driven by these
factors, this work explores the automatic detection, classification, and segmentation of
teeth, along with the classification of dental conditions.

Our investigation begins in a supervised manner with the annotation of teeth on the
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images. To address the slow and tedious nature of this task, we then progress to a second
stage, adopting the Human-In-The-Loop (HITL) approach. Here, neural network predic-
tions serve as provisional labels which are subsequently verified by human annotators.
Using this enriched dataset, we further our investigation of several tooth conditions in
combination with the noun phrases extracted from the textual reports.

Therefore, some questions guide this work:

1. How much time can we save using the HITL concept for annotating tooth instances
in dental panoramic radiographs?

2. Is it possible to accurately detect, classify, and segment the teeth on dental panoramic
radiographs?

3. Can we diagnose dental conditions precisely using the proposed pipeline?

In order to answer these questions, we:

1. Applied the HITL concept to expedite the annotation process of 3,150 images;

2. Performed a benchmark study to evaluate the use of two-stage detectors for detect-
ing, classifying, and segmenting teeth through instance segmentation;

3. From the previous results, studied classifying each tooth condition separately.

1.3 GOALS

1.3.1 General goal

This study’s primary goal is to contribute to the automatic dental panoramic analysis
focusing on the radiologists’ main targets: the teeth.

1.3.2 Specific goals

The specific goals of this thesis are:

• Employ instance segmentation two-stage detectors to automatically detect, number,
and segment the teeth in a panoramic radiograph.

• Constructed a dataset to support the research community and establish a bench-
mark.

• Leverage all available data to train classifiers for dental conditions extracted from
textual reports.
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1.4 CONTRIBUTIONS

We believe that our work makes significant contributions to various aspects, ranging
from data labeling to the final classification of dental conditions.

While reviewing an older dataset, we created a new one called the DNS Panoramic
Images dataset. With this dataset, we conducted a benchmark of four distinct deep
neural networks for instance segmentation: Mask R-CNN, PANet, HTC, and ResNeSt.
This comparisson allowed us to release the new dataset and determine the best end-to-
end neural network for segmenting and classifying teeth under the same conditions using
the mAP metric. Our results are detailed in the following paper:

• SILVA, B.; PINHEIRO, L.; PITHON, M.; OLIVEIRA, L. (2020). A study on
tooth segmentation and numbering using end-to-end deep neural networks. In 2020
33rd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.
164-171.

Following the previous work, we segmented the teeth from scratch of 450 panoramic
radiographs, considering tooth types and overlapping, resulting in the release of a new
dataset (DNS Panoramic Images v2). A labeled radiograph repository for tooth instance
segmentation, unmatched in size and quality in the literature. This dataset supported a
benchmark, where we compared Mask R-CNNs using two configurations of segmentation
heads: the traditional FCN module and the previously unused PointRend module. Our
findings are detailed in the paper

• PINHEIRO, L.; SILVA, B.; PITHON, M.; OLIVEIRA, L. (2021). Numbering per-
manent and deciduous teeth via deep instance segmentation in panoramic x-rays. In
2021 17th International Symposium on Medical Information Processing and Anal-
ysis (SIPAIM), pp. 95-104.

We proceeded with our investigations expanding our dataset using the HITL con-
cept. We benchmarked several instance segmentation neural networks trained from these
images to fix the architecture for the HITL scheme, which we adopted to speed up the
annotation process. This process resulted in our new dataset, so-called OdontoAI Open
Panoramic Radiographs (O2PR). The dataset comprises 4,000 images, from which 2,000
have their labels publicly available. We went a step further and released an online plat-
form where researchers could submit their solutions for three different benchmarks that
employ the labels of the remaining 2,000 radiographs. This access restriction was bene-
ficial, as it will reduce assessment biases. These results are detailed in:

• SILVA, B.; PINHEIRO, L.; PITHON, M.; SOBRINHO, B.; LIMA, B.; OLIVEIRA,
L.; ABDALLA, K.; CURY, P.; OLIVEIRA, L. (2023). Boosting research on dental
panoramic radiographs: a challenging data set, baselines, and a task-central online
platform for benchmarking. Computer Methods in Biomechanics and Biomedical
Engineering: Imaging and Visualization, pp. 1327-1347.
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We would also like to mention that we conducted some work not directly related to
the main focus of the thesis.

• ANDRADE, K.; SILVA, B.; OLIVEIRA, L.; CURY, P. (2023). Automatic dental
biofilm detection based on deep learning. Journal of Clinical Periodontology, 50,
571-581.

• SILVA, B.; PINHEIRO, L.; ANDRADE, K.; CURY, P.; OLIVEIRA, L. (2022).
Dental Image Analysis: Where Deep Learning Meets Dentistry. In Convolutional
Neural Networks for Medical Image Processing Applications (pp. 170-195). CRC
Press.

• HOUGAZ, A.; LIMA, D.; PETERS, B.; CURY, P.; OLIVEIRA, L. (2023). Sex
estimation on panoramic dental radiographs: A methodological approach. In Anais
do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS), pp. 115-
125. SBC.

• PRADO, I.; LIMA, D.; LIANG, J.; HOUGAZ, A.; PETERS, B.; OLIVEIRA, L.
(2024). Multi-Task Learning Based on Log Dynamic Loss Weighting for Sex Clas-
sification and Age Estimation on Panoramic Radiographs. In 20th International
Joint Conference on Computer Vision, Imaging and Computer Graphics Theory
and Applications (VISIGRAPP), pp. 385-392.

• DA SILVA, J. F., SILVA, B., & OLIVEIRA, L. (2022, October). No boundary left
behind in semantic segmentation. In 2022 35th SIBGRAPI Conference on Graphics,
Patterns and Images (SIBGRAPI) (Vol. 1, pp. 115-120). IEEE.

Finally, we would like to note that our new pre-print is currently undergoing its second
round of review at the Elsevier Medical Image Analysis journal:

• SILVA, B.; FONTINELE, J.; VIEIRA, C. L. Z.; TAVARES, J. M. R. S.; CURY,
P. R.; OLIVEIRA, L. (2024). Semi-supervised classification of dental conditions in
panoramic radiographs using large language model and instance segmentation: A
real-world dataset evaluation. arXiv preprint arXiv:2406.17915.

1.5 CHAPTER MAP

• Chapter 2 reviews the main studies on tooth segmentation, classification, and
dental condition detection. Additionally, we compare features of these studies,
such as dataset size and the number of dental conditions considered, with our own
work.

• Chapter 3 describes the materials and methods used in this work, covering the
starting databases, the construction of the datasets, and the adopted methodology.

• Chapter 4 describes the steps involved in creating the O2PR dataset for this work
using the HITL concept. The Chapter also includes the evaluation and benchmark-
ing of the instance segmentation neural networks used.
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• Chapter 5 introduces the experiments conducted using the framework developed
in this study for classifying dental conditions. The Chapter also presents how the
work was validated through assessments with dental specialists.

• Chapter 6 presents the final conclusions of this work, discussing its strengths,
shortcomings, applications, and future work.
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2
BACKGROUND AND RELATION WITH OUR WORK

Imaging is a fundamental tool for dentists and oral health experts who use photos,
magnetic resonance imaging, ultrasound, and radiographs, among other techniques, to
diagnose patients’ conditions and diseases, as well as to monitor treatment progressions.
When examining a panoramic radiograph, radiologists usually focus on the teeth, using
them as landmarks to analyze the image and report their findings. Specialists also register
missing teeth of patients, and the silhouettes of existing ones are helpful for forensic
identification. Similar processes occur in computer-aided diagnostic tools.

Dental professionals use a numerical notation in their written reports, as well as in
their daily routines, to avoid citing the full name of the tooth and to expedite communi-
cation. The most common tooth numbering system is the FDI World Dental Federation
notation, which represents each tooth by a two-digit number. The first digit specifies
the quadrant and the dentition type (permanent or deciduous), while the second digit
specifies the tooth type. In this work, we employ the FDI notation together with an ad-
ditional custom color code system used to illustrate the qualitative results. We illustrate
both systems in Figure 2.1, and we refer as “numbering” the act of identifying each tooth
using the FDI notation1.

2.1 TOOTH SEGMENTATION, DETECTION AND NUMBERING TIMELINE

Silva, Oliveira and Pithon (2018) were pioneers in applying deep learning to segment
teeth on panoramic radiographs. They used a Mask R-CNN (HE et al., 2017) trained on
binary masks that separated teeth from the background and showed that their approach
outperformed traditional solutions to the task. The authors also made their data public
under the name UFBA-UESB Dental Image dataset2, which proved to be a valuable

1For simplicity’s sake, we disregarded the supernumerary teeth in our analyses.
2The instructions on how to request the outcome data sets of our research were at:

https://github.com/IvisionLab/dental-image (UFBA-UESB Dental Images)
https://github.com/IvisionLab/deep-dental-image (UFBA-UESB Dental Images Deep)
https://github.com/IvisionLab/dns-panoramic-images (DNS Panoramic Images)
https://github.com/IvisionLab/dns-panoramic-images-v2 (DNS Panoramic Images v2)

9
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Figure 2.1: The illustration of FDI World Dental Federation notation. The system desig-
nates each tooth by a two-digit number, in which the first digit determines the quadrant
and the dentition type (permanent or deciduous), and the second digit determines the
tooth type. We added a custom color code to identify each tooth in our qualitative re-
sults. Source: Adapted from Pinheiro et al. (2021).
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resource to the community as it has been extensively used by many works (KOCH et al.,
2019; ZHAO et al., 2020; OLIVEIRA; FERREIRA; SANTOS, 2020; CHEN et al., 2021;
CUI et al., 2021; HSU; WANG, 2021).

Zhao et al. (2020) proposed a two-stage attention-based neural network for segmen-
tation, referred to as TSAS-Net. The goal was to tackle the challenge of accurately seg-
menting cluttered borders, such as those found in teeth on dental panoramic radiographs.
TSAS-Net consists of two stages. The first stage includes global and local attention mod-
ules that produce an initial segmentation map. The second stage is a segmentation
network that refines the previous segmentation. The authors achieved state-of-the-art
results with this configuration on the UFBA-UESB Dental Image Dataset.

Oliveira, Ferreira, and Santos (2020) proposed a new method based on Generative
Adversarial Networks (GANs), called Conditional Domain Adaptation Generative Adver-
sarial Network (CoDAGAN), designed to leverage both labeled and unlabeled data. The
method aims to address the issue of disparate patterns caused by digitization techniques
in biomedical images, a challenge that hinders the performance of data-driven techniques,
such as machine learning models. To validate their approach, the authors tested CoDA-
GAN on multiple datasets, including the UFBA-UESB Dental Image Dataset.

In a similar vein to Zhao et al. (2020), Chen et al. (2021) explore the challenge of fuzzy
root boundaries in panoramic radiographs, particularly in cases involving braces or root
resorption. To address this issue, they proposed a multi-scale location perception solution.
The key contributions of their work include: (i) a structural multi-scale similarity loss,
(ii) a module that identifies tooth pixels from a global perspective, and (iii) a new module
that aggregates multi-scale feature branches to reduce the semantic gap. Their approach
achieved state-of-the-art results on the dataset provided by Silva, Oliveira and Pithon
(2018).

Cui et al. (2021) also employ the UFBA-UESB Dental Image Dataset to conduct
experiments using their proposed method, ToothPix, which leverages Generative Adver-
sarial Networks (GANs) for tooth segmentation in panoramic radiographs. Their mo-
tivation aligns with previously mentioned works: improving the segmentation of tooth
boundaries, particularly in cluttered regions of panoramic images. A key contribution of
their approach is the use of wide residual blocks within an encoder-decoder setup, operat-
ing on image patches. This configuration, combined with data augmentation techniques,
enabled the model to achieve state-of-the-art performance.

Hsu and Wang (2021) investigated the detection and segmentation of previous dental
treatments in panoramic radiographs. To address this challenge, the authors proposed a
system called DeepOPG, composed of three modules: a functional segmentation module,
a tooth localization module, and a dental coherence module. By utilizing these segmen-
tation and localization techniques, the system can perform instance-level segmentation
of the objects of interest. The dental coherence module boost the system performance
significantly. The system experiments were conducted on the UFBA-UESB Dental Image
Dataset.

In an extension of the work of Silva, Oliveira and Pithon (2018) segmented tooth
instances on radiographs of the UFBA-UESB Dental Image Data Set also using Mask
R-CNN, though not numbering them. In order to perform instance segmentation, the
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authors manually modified 276 binary masks from the original data set that separated
the teeth from the background. This modification produced labels that disregarded tooth
overlapping, but their results surpassed the preceding ones pronouncedly. The authors
made their data publicly available under the name UFBA-UESB Dental Image Deep
Data Set2.

Silva et al. (2020) advanced the field by segmenting and numbering tooth instances.
They conducted a benchmark with 543 radiographs from the UFBA-UESB Dental Im-
age Data Set, modifying the original masks the same way Jader et al. (2018) did, also
incorporating numbering labels to the permanent teeth. The benchmark assessed the
performance of four end-to-end instance segmentation neural network architectures that
achieved state-of-the-art performance on the COCO data set: Mask R-CNN, PANet
(LIU et al., 2018), Hybrid Task Cascade (HTC) (CHEN et al., 2019a), and Cascade
Mask R-CNN backboned by a ResNeSt (ZHANG et al., 2020). The benchmark winner
architecture was the PANet, but the authors concluded that all architectures had satis-
factory performances on the task. Their data are publicly available under the name DNS
Panoramic Images2.

Lastly, Pinheiro et al. (2021) labeled from scratch a subset of 450 radiographs from the
UFBA-UESB Dental Image Data Set (SILVA et al., 2020) considering tooth overlapping
and deciduous teeth, topics neglected by previous studies. The authors refined the Mask
R-CNN prediction through the aid of the PointRend module (KIRILLOV et al., 2020).
They demonstrated that it is feasible to accurately number and segment permanent
and deciduous teeth through end-to-end deep learning solutions and that the PointRend
module was more beneficial for segmenting more complex-shaped teeth. They named
their data set DNS Panoramic Image v2 and made it publicly available2.

Other works from the community include the one of Tuzoff et al. (2019), which pro-
posed a two-stage solution for detecting and numbering teeth. In the first stage, a Faster
R-CNN network (REN et al., 2015) detects the teeth without numbering them. The
detections define the areas used to generate the crops for the next stage. These crops are
bigger than the tooth bounding boxes, which adds location context, easing the classifica-
tion task. In the second stage, a VGG-16 classification network (SIMONYAN; ZISSER-
MAN, 2014) takes these crops as inputs and classifies the teeth. In total, the experiments
relied on 1572 not publicly available images, labeled with bounding boxes by specialists.

Leite et al. (2021) proposed a two-stage solution to perform segmentation and num-
bering. In the first stage, a DeepLabv3 network (CHEN et al., 2017), backboned by a
ResNet-101 (HE et al., 2016), segments 16 tooth classes (two incisors, one canine, two
premolars, three molars for each dental arch). In the second stage, a fully convolutional
network (FCN) (LONG; SHELHAMER; DARRELL, 2015) refines the segmentation pre-
dictions. For their experiments, the authors employed 153 panoramic radiographs labeled
by an expert from a private data set. The two prior solutions had the inherent drawback
of not allowing end-to-end training.

Koch et al. (2019) trained a U-Net (RONNEBERGER; FISCHER; BROX, 2015) on
the UFBA-UESB Dental Images data set, where horizontal flipping and model ensemble
improved performance. Both solutions surpassed the results of classic methods. However,
semantic segmentation does not provide the necessary details for further processing steps
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in most of the automatic dental analysis.
Chung et al. (2021) developed a new method for detecting and classifying teeth on

panoramic radiographs. Firstly, through linear regression, the method localizes 32 points,
each representing a single permanent tooth in an adult mouth regardless of its presence,
automatically numbering them. In the second and final stage, the point coordinates are
refined, and the tooth bounding boxes are predicted in a cascade manner. This approach
ignores deciduous and supernumerary teeth.

Krois, Schneider and Schwendicke (2021) examined the impact of image context on
tooth classification. The authors showed that a model performance can significantly
increase with additional context around the tooth bounding boxes. They confirmed
this fact by training and evaluating ResNet-34 networks to classify teeth with different
contexts on a private data set comprising 5004 dental panoramic radiographs in total.
More than 50 annotators were involved in labeling this large amount of data.

Finally, Panetta et al. (2021), constructed and published a multimodal dental panoramic
radiograph data set. The data set comprises 1,000 radiographs and labels for tooth in-
stance segmentation, abnormalities, eye-tracking, and textual description. The authors
established some baselines only for semantic segmentation.

2.2 CLASSIFICATION OF DENTAL CONDITIONS

Ekert et al. (2019) employed a custom seven-layer neural network architecture to iden-
tify the presence of apical lesions across two levels in teeth, using panoramic radiographs.
The data labels were determined by a majority vote among six experienced dentists,
each of whom independently annotated the images. It is noteworthy that the teeth from
the panoramic radiographs were not automatically detected, but were rather manually
cropped prior to the application of the method. The area under the curve (AUC) result
of 0.85 led the authors to conclude that the solution demonstrated adequate performance,
even on a low-data regime (85 radiographs).

Fukuda et al. (2020) investigated the detection of vertical root fractures in teeth using
a convolutional neural network (CNN), specifically the DetectNet architecture using the
framework in DIGITS (TAO; BARKER; SARATHY, 2016). The experiments were con-
ducted on data set comprising 330 panoramic radiographs that contained clearly visible
fracture lines. Following a supervised learning approach, the data were annotated by two
radiologists and one endodontist and radiographs with minor fracture lines were excluded.
In a cross-validation setup, the model reached 0.83 of F1-score, which the authors deemed
promising.

Lee, Kim and Jeong (2020) evaluated the effectiveness of CNNs, specifically the
GoogLe- Net Inception-v3 architecture, in distinguishing between three types of odonto-
genic cystic lesions (OCLs): odontogenic keratocysts, dentigerous cysts, and periapical
cysts. The study utilized panoramic radiographs and cone beam computed tomography
(CBCT) images, which were first cropped and then resized to a uniform resolution of 299
by 299 pixels, maintaining the original aspect ratio. Images that were blurry, noisy, of
low quality, or otherwise unsuitable were excluded, resulting in a total of 2,126 cropped
images used in the analysis. The method was found to be effective, particularly when
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trained with CBCT images.
The study conducted by Kwon et al. (2020) utilized the YOLOv3 architecture to

identify the four types of dental cysts, including the three types previously studied by
Lee, Kim and Jeong (2020) and ameloblastoma. The research was conducted using 1,282
panoramic radiographs, which were labeled by two radiologists. Data augmentation tech-
niques were applied to enhance the data set. The attained AUC, sensitivity, specificity,
and accuracy values were considered high, even with a limited number of data samples.

Chen et al. (2021) developed an auxiliary diagnosis system for dental periapical ra-
diographs using CNNs. Their research focused on detecting lesions across various disease
categories and severity levels (mild, moderate, and severe) for conditions such as peri-
apical periodontitis and periodontitis. The study used 2,900 periapical radiographs in
which the exclusion criteria were images with deciduous teeth, incorrect illumination,
and severe distortion. The authors explored different system configurations to detect
and classify conditions across multiple dimensions: the entire spectrum of diseases and
their severity levels, all disease categories collectively, each disease category separately,
and each severity level individually. All results were encouraging, especially in the severe
level lesions, demonstrating the capability of CNNs in detecting and classifying multiple
diseases in periapical radiographs.

Yüksel et al. (2021) explored the classification of five dental conditions using an elab-
orate pipeline, termed DENTECT. The pipeline comprises three stages, each powered by
a distinct model. The first model divides the panoramic radiograph into four quadrants
using a segmentation network. Two YOLO-based neural network models subsequently
analyze each quadrant of the dental scans to detect and classify conditions. Addition-
ally, a separate model is dedicated to number the teeth within each quadrant, enhancing
the specificity of the diagnostic process. The study’s data set consisted of 1,005 dental
panoramic radiograph, initially annotated by intern dental students and subsequently
validated by a specialist. The authors concluded that the tool is adoptable and capable
of reaching the performance level of dental clinicians.

Khan et al. (2021) investigated the use of segmentation architectures for delineating
three types of dental conditions in periapical radiographs. Three specialists annotated
206 periapical radiographs to detect features of caries, alveolar bone recession, and in-
terradicular radiolucencies. The experiments demonstrated that U-Net-based neural net-
works surpassed the performance of other models under review. The authors conceded
that the results achieved were not outstanding but were acceptable and promising, high-
lighting the necessity for further research and a more diverse data set. They concluded
that less “off-the-shelf” and more “purpose-built” solutions might lead to a performance
boost.

Vinayahalingam et al. (2021) employed a Mask R-CNN neural network for segmen-
tation in panoramic radiographs, identifying not only the teeth but also five types of
dental conditions: crowns, fillings, root canal fillings, implants, and root remnants. In
accordance with a supervised approach, three clinicians labeled 2,000 radiographs. The
solution attained F1-scores exceeding 0.95 for detection, segmentation and classification,
which led the authors to conclude that deep learning-based methods may assist clinicians
in diagnosing and planning treatments.
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Liu et al. (2023) utilized four distinct neural network architectures – ResNet-50, VGG-
16, InceptionV3, DenseNet-121 – to classify various dental conditions using periapical
radiographs. The classifications included three common lesions: periapical periodontitis,
dental caries, and periapical cysts, in addition to the normal condition. Their experiments
involved 188 digital periapical radiographs, manually annotated. The images selected
underwent a filtering process to exclude those of low quality or those depicting other
lesions. In their experimental setup, the most performant neural network was DenseNet-
121, reaching 99.5% accuracy. The authors deduced from their findings that employing
CNNs for the analysis of periapical radiographs offers a reliable and effective method for
assisting in the diagnosis of dental conditions

Bonfanti-Gris et al. (2022) evaluated a web-based software of Denti.AI™, designed to
detect and classify five dental conditions using deep learning: metal restorations, resin-
based restorations, endodontic treatment, crowns and implants. The research utilized
a supervised learning approach and was conducted on 300 panoramic radiographs. The
findings demonstrated effective performance in identifying implants, crowns, metal fill-
ings, and endodontic treatments. However, it showed limitations in accurately classifying
dental structures and resin-based restorations.

Amasya et al. (2024) proposed DiagnoCat, a deep learning software designed to iden-
tify periodontal bone loss in panoramic radiographs. To achieve this, the authors em-
ployed two neural networks: one for segmenting and numbering the teeth, a Mask R-CNN,
and the other for directly detecting periodontal bone loss, a Cascade R-CNN (CAI; VAS-
CONCELOS, 2018). The experiments were conducted on 6,000 selected images that had
minimal image artifacts, at least 10 teeth, and no significant developmental anomalies.
In this supervised learning approach, the data was labeled by drawing bounding boxes
around relevant features. The authors compared the results attained by the proposed
framework with the assessments of three clinicians and found that the framework was
successful in accurately identifying periodontal bone loss.

Ranjbar e Zamanifar (2023) took a different approach from most dental research by
focusing on predicting eight future treatments instead of diagnosing existing conditions
(filling, endodontic treatment, crown, extraction, bridge, implant, reendo and surgical
extraction). A dentist with over 25 years of experience labeled the eight types of treatment
in 1,025 panoramic radiographs for the experiments. The authors employed an off-the-
shelf solution, a YOLOv7 neural network, and reached solid results. The employed model
achieved high accuracy in its predictions showing promising potential for application in
a clinical setting.

In the context of dental radiographic analysis, the study of Gao et al. (2024) presents
an approach on periapical radiographs. The research is grounded on a data set compris-
ing 413 radiographic images. Central to their study is the proposition of a YOLO-based
network, the YOLO-DENTAL, outlined to detect and classify four distinct dental con-
ditions: dental caries, dental defects, periapical lesions, and coronal restorations. The
authors decided to exclude radiographs depicting distorted teeth or dental crowding. The
YOLO-DENTAL achieved an mAP of 86.81%, compared to the 79.95% of YOLOv7-X,
leading to the conclusion that the work’s methodology can aid in clinical diagnosis.

Tassoker, Öziç and Yuce (2024) explored the use of a neural network (YOLOv5)
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for detecting idiopathic osteosclerosis, which is characterized by increased bone density
within the jaw, using panoramic radiographs. The research was conducted with a data
set of 175 images. The approach was based on supervised learning, where two radiologists
provided annotations for the radiographs. Despite the challenges posed by the limited
size of the data set and the variability in the radiographs’ contrasts and features, the
authors reported that their model achieved a high level of accuracy in detection.

2.3 RELATION WITH OUR WORK

Our work is closely related to the studies reviewed in the previous sections. Section
2.1 focused on tooth numbering, segmentation, and detection—tasks that are crucial for
developing diagnostic tools for dental conditions and have been a primary research focus
of our group. A significant challenge for this field research is the availability and quality
of data sets, which remains a major barrier for the research community. The labeling
procedure is almost always completely manual and many researchers collect and label
amounts of data only for their studies, with custom labeling standards. Consequently,
the researchers’ precious time is wasted at each new study. In addition, various metrics
are used, hindering any possibility of comparing the performance of the proposed solu-
tions. Our work tackled those problems by (i) introducing a large-scale, fine-labeled, and
high-variability data set for tooth segmentation and numbering, comprising 4,000 dental
panoramic radiographs built upon the HITL concept and (ii) releasing an online platform
for benchmarking solutions to work as task central for instance segmentation, semantic
segmentation, and numbering.

Section 2.2 reviewed research on the detection and classification of dental conditions,
which is the primary aim of AI systems designed to assist dental professionals. Although
the studies showed promising results, they primarily relied on off-the-shelf solutions and
limited datasets. This highlights that many opportunities for advancing dental condi-
tion detection remain unexplored. To address this gap, we proposed a new framework
that integrates multiple deep learning paradigms to effectively utilize both labeled and
unlabeled panoramic radiographs

Table 2.1 presents the key features of the reviewed work on tooth segmentation and
numbering compared to our data set. Our current study uses the largest data set size,
with one exception (KROIS; SCHNEIDER; SCHWENDICKE, 2021). However, the latter
only labels teeth for detection and numbering, not for segmentation, and is a private
data set. Besides works from our research group, there are only two other studies that
allow detection, numbering and segmentation (SILVA et al., 2020; LEITE et al., 2021;
PINHEIRO et al., 2021; PANETTA et al., 2021). Finally, our constructed data set is
public for the research community, different from many works (TUZOFF et al., 2019;
CHUNG et al., 2020; LEITE et al., 2021; KROIS; SCHNEIDER; SCHWENDICKE,
2021).

Table 2.2 compares the current study created data set with other research in dental
radiographic automation, highlighting common limitations. Most studies, except for one
using a data set of 6,000 images (AMASYA et al., 2024), relied on data sets with 2,900
or fewer samples (CHEN et al., 2021; LEE; KIM; JEONG, 2020; VINAYAHALINGAM
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Table 2.1: Main features of the previous works’ data sets and ours. To the best of
our knowledge, this work’s data set is the largest on tooth instance segmentation and
numbering of dental panoramic radiographs.

Authors # Radiographs Detection Numbering Segmentation Image dimensions Availability Annotators
Silva, Oliveira and Pithon (2018) 1,500 ✓ 1, 991 × 1, 127 Public Lay people

Jader et al. (2018) 276 ✓ ✓ 1, 991 × 1, 127 Public Lay people
Tuzoff et al. (2019) 1,572 ✓ ✓ N.A. Private Experts
Silva et al. (2020) 543 ✓ ✓ ✓ 1, 991 × 1, 127 Public Students

Chung et al. (2021) 818 ✓ ✓ Several Private Experts
Leite et al. (2021) 153 ✓ ✓ ✓ 2, 880 × 1, 504 Private Expert

Pinheiro et al. (2021) 450 ✓ ✓ ✓ 1, 876 × 1, 036 Public Mixed
Krois, Schneider and Schwendicke (2021) 5,008 ✓ ✓ N.A. Private Mixed

Panetta et al. (2021) 1,000 ✓ ✓ ✓ 1, 615 × 840 Public Mixed
We 4,000 ✓ ✓ ✓ 2, 440 × 1, 292 Public Mixed

et al., 2021). Such small data sets can compromise model generalizability. Additionally,
many studies excluded challenging cases, limiting the practical applicability of their find-
ings (FUKUDA et al., 2020; LEE; KIM; JEONG, 2020; CHEN et al., 2021; LIU et al.,
2023; AMASYA et al., 2024; GAO et al., 2024). The focus on a narrow range of target
classes (EKERT et al., 2019; FUKUDA et al., 2020; LEE; KIM; JEONG, 2020; KHAN et
al., 2021; LIU et al., 2023; AMASYA et al., 2024) further restricts the comprehensiveness
of these models.

Technically, most studies relied on supervised learning (RANJBAR; ZAMANIFAR,
2023; TASSOKER; ÖZIÇ; YUCE, 2024; AMASYA et al., 2024; BONFANTI-GRIS et al.,
2022), which requires extensive labeled data, which is a significant limitation. There was
also a trend towards using off-the-shelf solutions (LEE; KIM; JEONG, 2020; KWON et
al., 2020; VINAYAHALINGAM et al., 2021; LIU et al., 2023; RANJBAR; ZAMANIFAR,
2023).

This study introduces a novel framework for diagnosing various dental conditions from
panoramic radiographs, leveraging the largest data set in the field (16,824 images). A
semi-supervised approach, combining human-in-the-loop (HITL) strategy (SILVA et al.,
2023) and Masked Autoencoders (MAE) (HE et al., 2022), is used to enhance performance
and reliability. The proposed framework involves creating tooth crops from annotated
and predicted teeth on radiographs, with an auto-labeler using LLMs to extract dental
conditions from textual reports and map them to corresponding teeth using the FDI
numbering system. This approach covers 13 dental conditions and includes a statistical
agreement analysis to validate the results.

2.4 CLOSURE

This chapter reviews studies that have applied deep learning to panoramic radio-
graphs. These works can be divided into two categories: (i) studies focused on tooth
segmentation, detection, and numbering, and (ii) those investigating the detection and
classification of dental conditions. Although the latter studies are not directly related to
dental conditions, they can be particularly valuable to the former, as teeth are common
targets for radiologists, and the detection, segmentation, and preprocessing steps are es-
sential for many diagnostic tools. Therefore, it becomes imperative not only to research
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dental classification but also to investigate tooth detection and segmentation, as will be
addressed in the following chapters.



Table 2.2: Comparison of the current study with others regarding data set, task, learning
paradigm, proposed solution, and investigated classes.
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Chapter

3
MATERIALS AND METHODS

In deep learning-based systems, the number of adjustable parameters of a neural
network easily surpasses the million mark, demanding large amounts of data for training.
Most domains, including computer vision, fundamentally rely on supervised learning
techniques, which require labeled data to fit the deep learning model weights (LECUN;
BENGIO; HINTON, 2015). The labeling procedure depends on human specialists who
manually annotate the data according to the application purposes. This step is crucial
and can take up more than 80% of a machine learning project’s time (WU et al., 2021).
Consequently, labeled publicly available data sets are valuable resources, and for academic
research, they offer the additional benefit of creating benchmarks for model performance
comparisons (MENZE; GEIGER, 2015; CORDTS et al., 2016; WANG et al., 2018).
This scenario was no exception when it came to research on panoramic radiographs.
To fill this gap, we constructed from scratch a tooth instance segmentation data set of
dental panoramic radiographs that was publicly available to any researcher in the world
upon request. This dataset, combined with the HITL approach, supported our studies
by facilitating tooth instance segmentation in panoramic radiographs and enabling the
classification of various dental conditions through the use of available textual reports.

3.1 METHODOLOGY

The experimental nature of our study led us to adopt a holistic research structure,
guiding us from the inception of the deep learning project to its completion. We pro-
gressed through each step, including image data collection and labeling, design structur-
ing, quantitative evaluation, and human assessment. One of the key steps in our work
was the creation of a new tooth instance segmentation dataset from dental panoramic
radiographs, which was essential for our experiments. This dataset enables direct in-
vestigation into tooth detection and segmentation in panoramic radiographs. However,
constructing datasets is often costly and time-consuming, which can limit the size of
collections and the robustness of experiments. To mitigate the time required for manual
image annotation, we employed a Human-In-The-Loop (HITL) approach to accelerate
the labeling process.

21
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Figure 3.1: A general HITL diagram for the case of tooth instance segmentation on
panoramic radiographs. The process works as follows: A neural network is fitted with
available labeled data. This neural network produces annotations for the unlabeled data,
which are later verified by humans. The human supervision qualifies the newly labeled
data for the model training in subsequent HITL iterations.

The HITL approach aims to efficiently label the data by combining machine learning
models and human supervision, expecting an overall reduction of time and costs (WU et
al., 2021). Figure 3.1 displays a generic HITL pipeline with interventional training, using
dental panoramic radiographs as example. In that setup, an initial set of labeled data are
used to fit a machine learning model, which later produces annotations for new unlabeled
data. Then, human experts verify (confirm or correct) these annotations, which qualifies
them as suitable training and validation data for the next HITL iteration. After each
training iteration, the model performance is expected to improve, increasing the label
quality and lessening the verification time.

To effectively implement the HITL approach, it is important to choose a model that
not only performs the task but also operates at optimal performance levels. A significant
portion of our work focused on evaluating whether a two-stage detector could meet our
objectives, identifying the optimal configuration, and selecting the best available neu-
ral networks (SILVA; OLIVEIRA; PITHON, 2018; PINHEIRO et al., 2021; SILVA et
al., 2023). We found that several architectures (Mask-RCNN, PANET, HTC, ResNeSt)
demonstrated reasonably good performance (SILVA et al., 2020), but the choice of ar-
chitecture head and the backbone architecture had a significant impact on the results
(PINHEIRO et al., 2021; SILVA et al., 2023). Rather than exhaustively testing every
combination of backbone and head, we used the MMDetection (CHEN et al., 2019b),
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library for object detection that is an open-source, to benchmark top-performing net-
works on the COCO dataset. These models were evaluated based on their mAP metric,
allowing us to streamline the selection process.

Following the application of the HITL procedure, we thoroughly analyzed the results
to assess its effectiveness. Part of this verification involved the traditional comparison
of predictions from trained networks on panoramic radiographs with the ground truth,
where improvement was expected with each iteration. The other part involved comparing
the annotation time of human labelers with and without the use of the HITL concept.
It would only make sense to use HITL if these variables showed improvement after each
iteration. The improvement was evident, enabling us to move forward with constructing
our tooth instance segmentation dataset and classifying dental conditions. With the HITL
performance exhaustively validated, we proceeded with the setup for dental condition
classification.

As in any supervised learning paradigm, we needed labeled data to train our network.
A theoretical solution was to manually label each tooth, which was impracital, as our data
contained more than 400,000 tooth instances. We approached the problem in another
way: we labeled the data through the available textual reports, allowing we to classify
several dental conditions dental conditons. We also used the radiographs with unavailable
report as a pretraining strategy using tooth crops as data.

3.2 LIMITATIONS

We can point out some limitations of our work, such as the challenge of evenly sam-
pling the dataset from the broader population. To address this, we utilized data collected
directly from a dental clinic, allowing us to replicate patient distribution patterns and
closely mirror the local population. However, focusing on a local population excludes
ethnicities from regions farther away, possibly limiting the generalizability of the find-
ings. Therefore, we must acknowledge that our results are biased toward the ethnicities
represented in the patient population from which the data were collected.

In sum, the methodology of the study was designed to effectively achieve the research
objectives. First, data were collected directly from dental clinics, ensuring a representa-
tive sample of the target population and mitigating potential biases. Next, deep learning
techniques were employed to detect, segment, and classify dental conditions in panoramic
radiographs, using a HITL approach to expedite data annotation. The combination of
labeled and unlabeled data together with the textual reports enabled a more comprehen-
sive utilization of available information for dental condition classification. This method-
ological approach ensures analytical accuracy and provides a solid foundation for the
replicability and generalization of the results.

3.3 STARTING DATABASES

Machine learning and deep learning are heavily based on data, making the choice
of data sample critical. In addition, the sample should accurately represent the target
population. In this study, our goal was to apply the developed method to the general
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Table 3.1: Specifications of the device used for X-ray image acquisition.

Property Description
Model ORTHOPHOS XG 5/XG 5 DS/Ceph
Nominal frequency 50 Hz/60 Hz
Pipe output power 1080W with any radiation duration
Tube voltage 60–90 kV (at 90 kV max. 12 mA)

Scale of images
For P1, normal dental arch approx. 1:1.19,
i.e., the acquired image is enlarged
by approx. 19%, on average, compared to reality.

X-ray tube Siemens SR 90/15 FN or CEI OCX 100

Panoramic sensor Digital CCD line sensor, repluggable for
panoramic exposure technique

Active sensor area, panoramic type 138 mm × 6.48 mm
Widescreen sensor resolution 0.027 mm in size of the pixels
Size of images 2440 × 1292 pixels
Focus-sensor distance 497 mm

population, particularly to individuals who visit dental clinics. Thus, the use of data
from these establishments was deemed the most appropriate approach.

Our data were obtained from two collections of dental panoramic radiographs sourced
from a dental clinic. The first collection comprised 8,795 raw panoramic radiograph
images, accompanied by the names of the patients, taken between January 2012 and
April 2013. The second collection included 8,029 images, each paired with a textual
report in Portuguese, containing the patient’s name, age, and date of the radiograph,
captured between January 2015 and December 2016, totaling 16,824 images. The textual
reports were written in the .odt format. Both databases were generated using the same
device: an ORTHOPHOS XG 5/XG 5 DS/Ceph. Table 3.1 outlines the properties of the
device used.

3.3.1 Exploratory analyses

After collecting the data, we began our study with a preliminary analysis, which
was done in Python. First, we curated the two image banks that were available to us,
resulting in the 8795 and 8029 numbers previously mentioned. The images of these banks
had widths ranging from 2,272 to 2,692 and heights ranging from 1,292 to 1,304. The
most common size was 2,440 × 1,292, accounting for 79% of the images.

The textual reports were preprocessed from the original .odt format and converted
to the .txt format for consistency and easier manipulation. The final .txt files had
the format exemplified in Table 3.2 1: A two-digit number followed by a colon and the
report line. In Table 3.2, the teeth are highlighted in bold according to the FDI system
described in Fig. 2.1, to emphasize their significance for radiograph screening. In the

1For this article, all textual reports were translated from their original language (Portuguese) to
English.
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Table 3.2: Sample of a panoramic radiograph preprocessed report of the TRPR dataset.
It is highlighted in bold the mentioning of the teeth according to the FDI system described
in Fig 2.1 to reveal their importance.

Topic Number Report line
01: Anatomical modification in the

right and left mandible condyle.
02: Missing teeth: 18, 28 and 48.
03: Teeth 13 and 38 included and im-

pacted.
04: Tooth 36 and 37: endodontic

treatment. Partially filled root
canals.

05: Mild bone loss in the region of the
present teeth.

06: Modification of the bone trabec-
ulation in the region of tooth 48
compatible with a bone scar.

07: Calcification of the right and left
stylohyoid ligament complex.

textual reports used, as is commonly done, the digits of the textual reports denote a
tooth through the FDI notation, while other numbers are written in full.

Although the biological sex of the patients was not available, we were able to infer
it based on their names. In Portuguese, names generally provide a clear indication of
an individual’s biological sex, which allowed us to make this inference. The inference
procedure revealed that the male and female sex was not evenly distributed. The female
radiographs were the major one and acounted to 61.8% of the images in the first database
of images and 60.2% on the second database. Furthermore, the age distribution is shown
in Figure 3.2, which shows a wide range of values (1 to 90 years). The mean age is 32
years, with a standard deviation of 17.2 years.

3.3.2 Ethical Considerantions

The sensitive nature of the working data required special caution. We requested ap-
proval from the ethics committee for our project, ensuring that all procedures complied
with the necessary ethical guidelines and standards. The National Commission for Re-
search Ethics (CONEP) and the Research Ethics Committee (CEP) authorized the use
of the radiographs for research under report number 646.050/2014. Strict measures were
adopted to ensure data confidentiality: patient names and other identifiable information
were anonymized in accordance with ethical guidelines and data protection regulations,
meeting all ethical requirements for research involving human subjects.
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Figure 3.2: Age distribution of the patients of the second database ranged from 1 to 90
years, with a mean age of 32 years and a standard deviation of 17.2 years

3.4 PROPOSED SYSTEM

Our proposed solution consists of a four-step framework designed to automate tooth
detection and classification of dental conditions from panoramic radiographs:

1. Construction of the panoramic radiograph datasets;

2. Construction of the crop datasets;

3. Classification network pretraining and label extraction;

4. Classification of Dental conditions.

These steps are depicted in Fig. 3.3. Steps 1 and 2 were designed to quickly gener-
ate a collection of pseudolabeled panoramic radiographs for creating tooth crops. From
these groups, two distinct categories of datasets were built. The first group comprises a
set of panoramic radiographs in total dimensions. The second group, derived from the
first, comprises tooth crops for training binary classification models. Experiments of this
process will be discussed in detail in Chapter 5. Step 3 focuses on using large language
models to efficiently label teeth according to their dental conditions and to leverage data
without textual reports for pretraining, while Step 4 constists in training binary clas-
sifiers. The experiments related to these phases will be covered in Chapter 6. In the
following Sections, we discuss each step of our methodology in detail.
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Figure 3.3: Proposed solution for classifying dental conditions: (i) Construction of the
panoramic radiograph datasets: Combines the full-width radiographs into three non-
overlapping groups, (ii) Construction of the crop datasets: Generates tooth crops
centered on the teeth, (iii) Classification neural network pretraining and label
extraction: Pretrain networks via Masked Autoencoders (MAE) and creates labels from
noun phrases extracted of the reports, and (iv) Classification of dental conditions:
Trains a binary classifier for each dental condition.

3.4.1 Construction of the Panoramic Radiograph Datasets

The construction of the Panoramic Radiograph datasets is illustrated in Fig. 3.3 (i).
It began with all 16,824 image samples in their full dimensions. These images were gath-
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Table 3.3: Feature summary of the Panoramic Radiograph datasets, whose images were
obtained from the image bank in their full dimensions. These features include image
counts, tooth instance segmentation labels, textual report availability, tooth pseudola-
beling, image dimensions, and dataset splitting for training an instance segmentation
model.

Dataset # Images Inst. Segm.
Labels

Textual
Reports Pseudolabeling Mode

Dimensions
Inst. Segm.

Training Data

RPR 4,795 ✓
2,440×1,292

None
O2PR 4,000 ✓ All
TRPR 8,029 ✓ ✓ None

ered into three distinct, non-overlapping datasets. The first subset, consisting of 4,795
radiographic images without textual reports and devoided of tooth segmentation labels,
is called the Raw Panoramic Radiographs (RPR) dataset. The remaining 4,000 ra-
diographs without textual reports have segmented and numbered teeth, labeled either
manually or through the human-in-the-loop procedure. We called this one OdontoAI
Open Panoramic Radiographs (O2PR). Finally, we designated the subset of images
accompanied by textual reports as the Textual Report Panoramic Radiographs
(TRPR) dataset.

The O2PR dataset was constructed using the HITL2. The data set aimed to fill a gap
in the dentistry field, where a large-size and consistently labeled panoramic radiograph
data set was lacking, while deep learning applications were still in an incipient stage
compared to other healthcare areas (SCHWENDICKE; SAMEK; KROIS, 2020). The
objects of interest were the teeth, which were annotated and classified. However, the
RPR and TRPR datasets lacked labels, a challenge we addressed by generating pseudo-
labels, as will be discussed in the following section. The main characteristics of these
datasets are presented in Table 3.3.

3.4.2 Tooth pseudolabeling and construction of the crop datasets

This step serves two purposes, as illustrated in Fig. 3.3 (ii): (i) to automatically
generate pseudo labels for the teeth in the radiographs of the RPR and TRPR datasets
using an instance segmentation network, as they do not contain instance segmentation
labels; and (ii) to create tooth crops from the tooth labeled and pseudo labeled images,
which are later used to train and test the classification neural networks. These procedures
allow for consistent, uniformly sized image crops over all datasets around each tooth. The
standardization is crucial for subsequent steps, as the classification neural networks are
trained on fixed-size inputs.

We aimed to use neural networks trained on the O2PR, developed using the HITL
process, to pseudolabel the RPR and TRPR datasets. However, these networks had not
yet undergone comprehensive validation. Verifying their effectiveness was crucial to en-
sure accurate pseudolabeling of additional radiographs. To address this, we conducted

2The O2PR dataset was publicly available until February 2024.
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a validation process designed to assess both tooth detection and segmentation accuracy
before and after applying HITL. The process is described in Chapter 4 and involved:
(i) benchmarking several instance segmentation network architectures and selecting the
best-performing model for further experiments; (ii) evaluating the progress of the net-
works across HITL iterations; and (iii) performing a numbering analysis of mean average
precision (mAP) per tooth, as well as a confusion matrix analysis based on the Intersec-
tion over Union (IoU). The achieved reliability provided us with the confidence to utilize
the neural network predictions as pseudolabels for the RPR and TRPR datasets.

An instance segmentation neural network was trained on all 4,000 labeled images of
the O2PR dataset. The hybrid task cascade (HTC) architecture (CHEN et al., 2019a)
was selected because it was the best model in the benchmark conducted by Silva et al.
(2023). HTC ensures more accurate object boundaries and improved detection results by
leveraging information from tasks like semantic segmentation. Using this network, the
teeth of all the remaining unlabeled radiographs from the RPR (4,795) and the train set
of TRPR (8,029) datasets were segmented. Finally, 4,000 labeled radiographs and 12,824
pseudo labeled radiographs were obtained.

After training, our HTC instance segmentation neural network was employed to gen-
erate two distinct datasets of tooth crops from all labeled and pseudolabeled radiographs.
The pseudolabels were essential, as our system needed to create crops around the teeth in
the panoramic radiographs. This step was crucial for associating the TRPR tooth crops
with their respective conditions via the textual reports, while the remaining crops, which
lacked textual reports, were utilized as pre-training data. This approach minimized data
wastage, as even crops without labeled dental conditions were effectively utilized.

The primary tooth crop variant spanned 224 × 224 centered around each tooth. This
tooth crop type has the advantage of being more focused on the teeth but the disadvantage
of having less context of the tooth surroundings, possibly excluding tooth parts. This
dataset is termed “less context” crops. To address the context gap, a second crop category,
termed “more context” crops, began with a broader 380×380 area, which was then resized
to 224×224 to comply with the requirements of the employed neural network architecture
used for classification. These data crops served as input for the subsequent step. After
this procedure, approximately 460,000 crops were obtained for each configuration. Fig.
3.4 illustrates the cropping procedure, while Table 3.4 compiles the features of these
datasets, termed Crops. This table also includes the dataset split for pretraining and
training of the classification networks.

3.4.3 Classification network pretraining and label extraction

The next step is illustrated in Fig. 3.3 (iii). This stage consists of two distinct
processes that can be executed independently: the neural network pretraining and label
extraction (via auto-labeler). The neural network pretraining was designed to enhance
the performance of classification models for the final tasks, leveraging even the unlabeled
data to learn significant features.

A ViT archictecture was selected for the used pretraining strategy because of its
superior performance in benchmarks (KHAN et al., 2022), where it achieved state-of-the-
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Figure 3.4: Two tooth crop variants used in this study. The first, termed the “less
context” crop, was taken from a panoramic radiograph of a tooth and measures 224×224
pixels. The second, termed the “more context” crop, was resized to 224×224 pixels from
an original crop of size 380×380 pixels. These two sets comprise the Crops dataset.
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Table 3.4: Feature summary of the second group of datasets, termed Crops, whose
images were used to pretrain and train binary classifiers for tooth conditions. These
characteristics include the image dimensions, source dataset, crop counts, textual reports
availability, pretraining usage, and dataset splitting to train and test the binary classifiers.
All the images are tooth crops sourced from the first group of datasets.

Dataset Crop
Dimensions

Source
Dataset # Crops Textual

Reports Pretraining Train Validation Test

Less
context 224×224 RPR 132,497

All None None None
O2PR 112,842

More
context

380×380
to 224×224 TRPR 213,395 ✓ Train only (70%) 70% 15% 15%

Figure 3.5: Illustration of a MAE: Selected patches from an input image are obscured, and
the remaining visible patches are processed through an encoder. The obscured patches
are subsequently reconstructed using a decoder from the latent space representations.

art results by exploiting transformers, and due to its convenience for employing the MAE
strategy. The current study used MAE, a variant of deep-learning autoencoders trained
by deliberately masking out portions of the input data, as a pretraining strategy. This
“masking” approach challenges the network to reconstruct the original data, including the
intentionally obscured (masked) patches, resulting in a more robust latent representation.
Benefiting from transfer learning principles, MAEs can leverage pretrained models to
further enhance their performance and generalization capabilities.

Fig. 3.5 illustrates an MAE within the context of the ViT architecture. Given an
input image segmented into a grid with some sections obscured, the encoder compresses
this partial image into a compact representation. These encoded data are then processed
by the decoder, aiming to regenerate the full image. In the selected configuration, the
decoder has fewer parameters than the encoder to focus on efficient reconstruction (HE et
al., 2022). After completing the pretraining phase, the decoder is discarded, emphasizing
its role in learning robust image representations without contributing to the final task
performance.

The auto-labeler is the second process, executed in parallel with the pretraining pro-
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cedure. The labels here represent dental conditions; therefore, only the crops from the
TRPR dataset were used, as this dataset is the only dataset containing textual reports.
This process aimed to extract the noun phrases to create the labels later used as ground
truth for the classification neural networks. A noun phrase is a word or group of words
with a noun as its head or main word. Noun phrases can function in a sentence as a sub-
ject, an object, or a complement. They can be single nouns or more complex structures
with modifiers and related words. In the proposed framework, extracting noun phrases is
necessary because all dental conditions are noun phrases, although not all noun phrases
are dental conditions.

A large language model was used to automate and expedite noun phrase extraction.
The adopted methodology is centered on prompt engineering – a technique where spe-
cific inputs are crafted to elicit desired outputs from language models. Guided by this
approach, the following prompt was formulated to be executed on the textual reports:

“You are an excellent English teacher who indicates for each item (sentences
starting with two digits) of a textual report the noun phrases through vertical
topics."

With the input above, for instance, the noun phrases extracted from sentence “03” in
the report shown in Table 3.2 were:

• Tooth 36
• 37
• Endodontic treatment
• Partially filled root canals

However, in the lists of noun phrases, the teeth are not directly connected to their
conditions. A linkage procedure was used to solve this issue. In this procedure, all teeth
were associated with all present conditions in the sentence. For instance, using the linkage
procedure, tooth 36 and tooth 37 both have the conditions of endodontic treatment and
partially filled root canals. This example is illustrated in the following line:

Tooth 36 and 37: endodontic treatment. Partially filled root canals.

The linkage process proves effective in the context of dental reports, which are or-
ganized by specific conditions. Radiologists are more favorable to note the presence of
conditions rather than the absence. This tendency is illustrated in the case of the patient
mentioned in Table 3.2, sentence “03”. For example, it is less common for radiologists
to document each tooth lacking conditions, such as ‘Teeth 17, 16, 15, 14, 13, ... with-
out endodontic treatment or unfilled root canals’, focusing instead on those with notable
conditions.

Sentences detailing the presence or absence of teeth were excluded from the analysis,
as illustrated in sentence “02” of Table 3.2. This decision was based on the understanding
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that this task is better conducted using object detection or instance segmentation tech-
niques specifically designed for identifying and delineating objects within images (SILVA
et al., 2020; PINHEIRO et al., 2021; SILVA et al., 2023). To filter out these sentences,
straightforward regular expressions were implemented.

3.4.4 Dental conditions classification

The fourth and final step of our framework focused on training binary ViT classi-
fiers, as shown in Fig. 3.3 (iv). Initially, we used a baseline model without pretraining.
To enhance the approach, we also explored pretrained weights from MAEs. Specifically,
MAE weights pretrained on two datasets—the widely recognized ImageNet and the pre-
viously constructed Crops dataset—were utilized. Following this pretraining, we trained
a separate classifier for each selected tooth

The method was evaluated using the Matthews Correlation Coefficient (MCC) metric
(MATTHEWS, 1975). The MCC takes into account true positives (TP), false positives
(FP), and false negatives (FN), including the frequently overlooked true negatives (TN):

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

. (3.1)

The main properties of MCC include:

• The denominator acts as a normalization factor, bounding MCC values between -1
and 1;

• A score of -1 indicates entirely incorrect predictions, while 1 signifies perfect pre-
dictions;

• An MCC of 0 implies predictions equal to random guessing; MCC treats TP, TN,
FP, and FN symmetrically, an important feature when these values bear similar
implications;

• MCC is preferable to the cases of imbalanced datasets as it does not give highly
optimist results in opposition to other metrics, such as accuracy.

3.5 CLOSURE

In this chapter, we provided a comprehensive description of the methodology, which
was thoroughly examined. While the procedure is somewhat complex, it has the potential
to address and enhance various aspects. The panoramic radiographs were labeled with
small effort through the HITL procedure and by using the predictions of an instance seg-
mentation network. We could directly create the Crop dataset through the Radiograph
Panoramic datasets and pretrain the binary classifiers with the MAE strategy to boost
their final performance. With the support of a Large Language Model, we generated the
classification labels directly from the radiological reports used to train the final binary
classifiers.





Chapter

4
DATASETS THROUGH HUMAN-IN-THE-LOOP AND

PSEUDOLABELING

The primary goal of this work was to automatically detect dental conditions from
panoramic radiographs. A key step involved creating two datasets: full-size labeled
panoramic radiographs and tooth-centered labeled crops. The panoramic images are
used for training networks in tooth numbering, while the tooth crops are essential for
training networks specialized in condition classification.

This section details the use of Human-In-The-Loop (HITL) and pseudolabeling tech-
niques to efficiently labels of panoramic radiographs, and generate tooth crops. A dental
instance segmentation network is employed to isolate individual tooth to create the tooth
crops, which will be followed by a Vision Transformers (ViT) network to classify the
conditions. By integrating these methods, we aim to improve the accuracy and efficiency
of the automated detection and classification process.

4.1 PANORAMIC RADIOGRAPH DATASET CONSTRUCTION

We employed the HITL technique to perform instance-level tooth segmentation in
panoramic radiographs and created a dataset called OdontoAI Open Panoramic Radio-
graphs (O2PR) dataset. The O2PR dataset contains 850 manually annotated images and
was constructed using 1,493 radiographs from the UFBA-UESB Dental Image Dataset
(after discarding seven duplicates from the original 1,500) along with 2,507 additional im-
ages, totaling 4,000 radiographs. All radiographs were sourced from the previously men-
tioned image database, acquired using an ORTHOPHOS XG 5/XG 5 DS/Ceph device.
Silva, Oliveira and Pithon (2018) grouped the original 1,493 images into ten radiograph
categories, according to the presence of dental appliances, restorations, and 32 teeth.
Two supplementary categories are exclusive for radiographs with dental implants and
mouths with more than 32 teeth. This categorization demonstrated the high variability
of the data. Following this categorization, we grouped the remaining radiographs of the
image bank and noted that the database category proportions differed from the original
1,493 images subset. For instance, the radiographs of Category 1 were too oversampled

35
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Table 4.1: Summary of the UFBA-UESB Dental Image and O2PR data sets according
to the number of images per radiograph category. We conducted the HITL procedure so
the O2PR’s radiograph category proportions were similar to the image database’s.

Category 32 Teeth Restorations Dental Applicance UFBA-UESB Dental Image O2PR
1 ✓ ✓ ✓ 73 93
2 ✓ ✓ 219 438
3 ✓ ✓ 45 110
4 ✓ 138 274
5 Radiographs contaning dental implant(s) 120 228
6 Radiographs contaning more than 32 teeth 169 335
7 ✓ ✓ 114 420
8 ✓ 455 1804
9 ✓ 45 93
10 115 205

Total 1493 4000

in the UFBA-UESB Dental Image Data Set while images of category 8 were subsampled.
We conducted our HITL procedure so that, at the end of it, the 4,000 images’ category
proportions would be similar to the image database’s. Table 4.1 summarizes the O2PR
dataset according to the number of images per category in the original dataset and the
newly selected ones for the HITL.

4.2 MANUAL LABELING

An initial amount of labeled data is always required in the HITL semi-supervised
procedure. Our work started from 450 images of the UFBA-UESB Dental Image dataset,
in which four students labeled a subset, as detailed by Pinheiro et al. (2021). The
students were two dentistry undergraduates and two STEM graduates experienced in the
research of tooth segmentation and numbering on panoramic radiographs. An experienced
radiologist supervised the students’ work. Each student labeled about a fourth of the
images using the COCO Annotator software and its polygon tool (BROOKS, 2019).
The annotators should click on the tooth borders precisely as possible to delineate the
teeth’ outline, being expected crisper segmentations on sharp and well-focused images.
In blurry images or regions, the students should picture the tooth contours based on their
anatomical structure and label them accordingly, except when there was solid evidence
for not doing so. Some criteria were defined as to be the standards for the labeling
procedure:

(a) Implants should not be labeled;

(b) Prostheses should be incorporated into the tooth instances if they are associated
with a single tooth root. If not, only the prothesis portions related to the tooth
root in question should be considered;
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(a) Implants. (b) Protheses. (c) Molar roots. (d) Restorations. (e) Appliances.

Figure 4.1: Label samples of the employed criteria for annotating implants, prostheses,
molar roots, restorations, and dental appliances. In general, the labels should be more
refined on sharp and well-focused images, while in blurry images, the annotators should
rely more on the tooth anatomical structures.

(c) The palatine root of molars should be segmented, even if the spot is blurry;

(d) Restorations should be fused to the corresponding tooth instances;

(e) Dental appliances should be ignored. For labeling, the annotators should picture
the tooth silhouettes when apparatuses, such as brackets and metal rings, blocked
the visualization;

Figure 4.1 displays corresponding label samples of the aforementioned criteria. We
followed the same criteria to label 400 additional images (40 per radiograph category),
totaling 850 with the images labeled by Pinheiro et al. (2021) This last group of images
compounded our test set for assessing the neural networks trained at each HITL iteration.

4.2.1 HITL setup

Our HITL methodology consisted of the cycle depicted in Figure 4.2: We trained a
network with the available labeled radiographs and, subsequently, used its predictions as
provisional labels for a new set of images. Our annotators verified these labels, which
were incorporated in the next iteration into our training and validation sets for a new
neural network training, restarting the cycle.

The adopted methodology demanded the setting of some parameters and conventions.
For instance, we had to define the image subset size of the HITL labeled images and how to
conduct the neural network training. A reasonable choice to consider was to label a single
image using the model prediction and, subsequently, fine-tune the current weights of the
neural network using the available labeled radiographs incremented by the newly available
one. We did not follow this approach due to theoretical concerns and practical issues. The
theoretical concerns were primarily due to the possibility of bias induction towards the
first employed images and labels because, at each cycle step, the neural network training
would start from a state where the weights would better suit those images. The practical
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Figure 4.2: Our HITL setup: we trained a neural network with the available labeled
radiographs and verify the model predictions on unlabeled images. In this setup, we
doubled the number of labeled images at each iteration.
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issues lay in the fact that our annotators should verify the model predictions in the same
proportions. Our annotators had different time-availability and daily routines. It was
impractical for them to verify the HITL annotations in small, consistent cycles (e.g., the
first annotator verifies the predictions over one image, the second annotator verifies the
predictions over a second image, the third annotator validates another one, and so on).
Letting the annotators verify the labels in any order would introduce untraceable biases,
hindering us from performing in-depth analyses of the HITL outcomes.

In order to avoid any of the concerns mentioned above, we chose to verify the instance
segmentation predictions for large sets of images at each cycle. Our setup labeled the
same amount of images at each HITL iteration as the number of images used for training
and validation. This way, we began with the 450 images from Pinheiro et al. (2021) split
in training (405 images) and validation (45 images), doubling the set sizes at each cycle:
The first iteration used 450 images (405 for training and 45 for validation), the second
900 images (810 for training and 90 for validation), continuing until we reached the fourth
and final iteration containing 3600 images (3240 for training and 360 for validation). We
hoped with this setup that, at each HITL iteration, we could perceive an improvement
in the neural network performance, increasing the labeling quality.

4.2.2 Selecting the deep learning architecture for the HITL scheme

We conducted a benchmark with several state-of-the-art instance segmentation neural
network architectures to define the model to be used in the HITL scheme. We selected
the available architectures with the highest mean Average Precision (mAP) values on
the COCO 2017 validation set. The mAP metric is a synonym for mAP@0.5:0.05:0.95,
indicating that mAP is the mean value of the ten average precision (AP) scores with true
positive thresholds of 0.5 up to 0.95 (inclusive) in steps of 0.05. The AP means, for each
class, the area under the curve (AUC) of the precision-recall graph, where a true positive
is computed when the prediction has an intersection over union (IoU) with a ground truth
segmentation larger than the considered threshold. Usual AP metrics include AP50 (AP
with 0.5 threshold value) and AP75 (threshold of 0.75). A threshold value equal to or
larger than 0.85 is stringent, as well the final mAP metric. Throughout the HITL scheme,
we used mAP as the primary metric in most of our experiments and analyses. In the end,
our benchmark comprised seven architectures in total: A conventional Mask R-CNN (HE
et al.; 2017), backboned by a ResNeXt-101-64x4d; Cascade Mask R-CNN (CAI; VAS-
CONCELOS, 2019), backboned by a ResNeXt-101-64x4d; Mask R-CNN backboned by
a ResNeSt-101 (ZHANG et al., 2020); Cascade Mask R-CNN with Deformable Convolu-
tional Networks (DCN) (DAI et al., 2017) backboned by a ResNeXt-101-64x4d; Cascade
Mask R-CNN backboned by a ResNeSt-101 (ZHANG et al., 2020); Hybrid Task Cas-
cade (HTC) (CHEN et al., 2019a) with DCN backboned by a ResNeXt-101-64x4d; and
DetectoRS (QIAO; CHEN; YUILLE, 2021) with HTC head backboned by a ResNet-50.

Each selected architecture introduced or adopted appropriate techniques to boost its
COCO instance segmentation benchmark metrics. Mask R-CNN was the first architec-
ture to extend the Faster R-CNN to instance segmentation by adding a mask branch. It
also introduced the RoiAlign, a quantization-free layer, and employed a Feature Pyra-
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mid Network (FPN) (LIN et al., 2017). The Cascade R-CNN or Cascade Mask R-CNN
demonstrated the benefit of using a sequence of detectors with increasing IoU thresholds.
DCNs are neural network modules that enhance the CNNs capabilities on transformation
modeling, adding only a small computational overhead. The ResNeSt backbone stacks
modular ResNet-like blocks that can attend to different feature-map groups. HTC’s main
contribution is a framework that interweaves the detection and segmentation tasks in a
cascade fashion. Finally, DetectoRS improves object detection with two strategies: (i)
Recursive Feature Pyramid, which modifies the FPNs through extra feedback connec-
tions to the bottom-up backbone layers, and (ii) Switchable Atrous Convolution, which
are convolution operations with different atrous rates whose results are aggregated by
switch functions. It is worth emphasizing that the benchmark ultimate goal was not to
fairly compare methods and techniques (as the network and backbone sizes could vary
significantly) but rather to specify a solid and reliable architecture to be used in our
HITL scheme.

The benchmark protocol and the neural network training procedure for the HITL
iterations were the same: It consisted in training each architecture for 150 epochs, with
90% of the available data as training set and 10% as validation set. We cropped all images
to the reduced dimensions of 1876 × 1036 (159 pixels from the top and horizontally
centered) to improve the network performances. These numbers and methodology came
by roughly removing 80% of the extent between the outermost segmentations and the
image borders of the 450 firstly labeled radiographs. This cropping may exclude tooth
parts, or even the entire instances, hindering some applications, but, in the HITL, the
human supervisor can catch these eventualities and correct them.

Each network performance was measured at the end of each epoch, and we saved
the weights corresponding to the highest attained segmentation mAP. The optimizer
was the stochastic gradient descent (SGD) with a 0.9 momentum value and no weight
decay. We trained the models with eight Tesla V100 16GB GPUs with a batch size of
8 (one sample per GPU). We employed a linear warm-up strategy, linearly increasing
the learning rate from 0 up to 0.024 in the first 40 epochs. Data augmentation was
solely done through horizontal flipping, cautiously changing the tooth classes to their
new corresponding numbers (right-sided teeth turned into left-sided teeth and vice-versa).
Finally, we mention that the mask branches are class agnostic, i.e., it only segments the
object from the background. Table 4.2 summarizes the benchmark results (with the scores
in green representing the highest one, while the smallest one are in red). The winner
architecture was HTC, which also had the best values on all considered metrics, except
on segmentation AP50 by a tiny margin. The HTC’s final scores were also substantial,
confirming it as a trustworthy option for our HITL scheme. We used the benchmark’s
resulting HTC neural network to start the labeling of new radiographs.

4.2.3 HITL labeling

The HITL-based labeling started with the predictions of the HTC neural network.
We labeled 450 radiographs in the first HITL iteration, as indicated in Figure 4.2. This
iteration was considered experimental, as the annotators had not previously verified an-
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Table 4.2: Summary of the benchmark results. The HTC architecture with DCN back-
boned by a ResNeXt-101-64x4d was the winner architecture and the used model for our
HITL scheme.

Detection SegmentationArchitecture Backbone Head DCN AP75 AP50 mAP AP75 AP50 mAP
HTC X-101-64x4d-FPN HTC ✓ 0.913 0.983 0.795 0.958 0.983 0.802
DetectoRS ResNet-50 HTC 0.909 0.982 0.777 0.930 0.984 0.780
ResNeSt Cascade R-CNN S-101-FPN Cascade 0.871 0.917 0.748 0.898 0.918 0.745
Cascade R-CNN with DCN X-101-32x4d-FPN Cascade ✓ 0.896 0.972 0.771 0.922 0.972 0.766
ResNeSt Mask R-CNN S-101-FPN FCN 0.873 0.931 0.753 0.913 0.931 0.755
Cascade R-CNN X-101-64x4d-FPN Cascade 0.901 0.982 0.763 0.939 0.982 0.768
Mask R-CNN X-101-64x4d-FPN FCN 0.848 0.969 0.752 0.916 0.978 0.758

notations from model predictions. Indeed, it quickly became notorious that manual image
labeling is quite different from labeling verification. When labeling a radiograph from
scratch, the annotator may promptly detect or localize the teeth and segment their in-
stances using the annotator software mechanisms such as the polygon or brush tools. In
the COCO Annotator software, the resulting area is filled with a colored layer to distin-
guish the already segmented objects from the others. On the other hand, when working
on verifying neural network predictions, the human annotators must visually inspect the
results and quickly confirm or correct the provisional labels. For that, the annotators
can benefit from any software annotation tools, but in our case, they most frequently
used the polygon point drag-and-drop feature. Two issues arise from this: (i) the filled
segmented areas obstruct the instances, hampering the verification; (ii) the large number
of points per segmentation slows down and hardens the corrections because point shift
has less impact on the annotation. We mitigated these issues by changing the software
source code of COCO Annotator, reducing the shape opacity, and lowering the number of
control points through the Ramer–Douglas–Peucker algorithm with a tolerance of 2 pixels
(DOUGLAS; PEUCKER, 1973). Figure 4.3 illustrates these modifications, evincing the
new higher impact of point shift. Furthermore, we added a keyboard shortcut to toggle
the annotation visualization, which was very helpful for the annotators.

We defined some correction criteria based on our observations during the labeling
verification of the first HITL iteration. It was evident that the network predictions
were outstanding, yet they were usually worse than manual annotations. This worse
performance was mainly due to delicate details that could be polished such as the serrated
segmentations originated from the network’s low-resolution masks. Figure 4.4 shows
samples of the serrated patterns on tooth crowns and on lower molars, which were highly
frequent, especially on the former. For many applications, such as tooth detection and
numbering, these tiny mistakes can be overlooked. However, we decided not to ignore
those errors, as we want our data set to be general-purpose. In sum, the labels after
correction should be as similar as possible to the manual labels. This determination
slowed down the verification procedure significantly because our annotators had to make
many tiny adjustments. With this main criterion defined, we proceeded with the other
three iterations, reaching in the end 3,150 HITL labeled radiographs.
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(a) Original code. (b) Changed code.

Figure 4.3: Illustration of the software visualization due to the code changes. The red
area evinces the higher impact in the annotation when on a point shift. We reduced the
shape opacities, easing the annotation verification, and lowered the number of control
points. (a) Visualization of a tooth annotation with the original code and no tolerance
in the Ramer–Douglas–Peucker algorithm and the impact on the annotation when point
A moves to point B. (b) Visualization of a tooth annotation with the changed code and
the impact on the annotation when point C moves to point D.

4.3 EVALUATION OF THE HITL RESULTS

The ultimate goal of our work was to create a labeled data set to boost research
on dental panoramic radiographs. Under this perspective, the outcomes of the HITL
procedure sufficed for our purpose, dispensing to report the performance of the trained
models on a test set. However, we expect the deep learning community to heavily use
our data set and increasingly employ the HITL concept to speed up the annotation
process. Therefore, we performed detailed analyses on the HITL outcomes, including the
evaluation of the trained networks on a separate manually labeled test data set. We aimed
through these analyses to measure the HITL benefits and identify the main bottlenecks
for better results.
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(a) Serrated masks on tooth crowns. (b) Serrated masks on lower molars.

Figure 4.4: Samples of the serrated pattern due to the network’s low-resolution mask
predictions. This pattern frequently occurred on (a) tooth crowns and (b) lower molars,
especially the former. The red arrows point to some spots with those patterns.

Table 4.3: Results of the trained neural networks in our HITL system on their corre-
sponding validation data sets. The validation data sets comprise 10% of the available
data at their HITL iteration. We highlight the best (green) and worst (red) results per
metric.

Detection SegmentationNeural
Networks AP50 AP75 mAP AP50 AP75 mAP
HTC 1 98.3 91.3 79.5 98.3 95.8 80.2
HTC 2 98.7 94.8 81.6 98.7 96.7 82.1
HTC 3 98.9 97.1 83.6 98.9 97.1 83.6
HTC 4 98.9 96.6 86 98.9 97.7 85.9

4.3.1 Model results on validation data

Table 4.3 synthesizes the detection and segmentation metrics (AP50, AP75, and mAP)
attained by the trained neural networks in our HITL system, highlighting the best (green)
and worst (red) results per metric. These metrics come from the best networks according
to the segmentation mAP over the validation data sets, which comprised 10% of the
available data at each HITL iteration. We call these networks HTC 1, HTC 2, HTC
3, and HTC 4. The number in their names corresponds to the iteration in which the
network was trained.

When looking at the results of Table 4.3, we perceive an unmistakable increasing trend
on the considered metrics, especially on the mAP ones, which contain the primary metric
(mAP for segmentation). The increasing trend exists in the other looser metrics (AP50
and AP75) but is less pronounced. This difference was no surprise, as the selection of the
network weights was according to the segmentation mAP, and the AP50 and AP75 values
were already pretty high on the first HITL iteration (not much room for improvement).
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Table 4.4: Results of HTC 1, 2, and 3 on the verified labeled from their predictions over
450, 900, and 1800 images, respectively. We highlight the best (green) and worst (red)
results per metric.

Detection SegmentationNeural
Networks AP50 AP75 mAP AP50 AP75 mAP
HTC 1 82.0 79.2 71.2 82.0 80.3 74.0
HTC 2 88.4 87.5 79.6 88.4 87.6 82.1
HTC 3 89.4 88.3 80.9 89.4 88.7 82.7

4.3.2 Model results on HITL data

The HITL labeled data is an alternative to the validation data sets for model eval-
uation. In this case, we evaluate the model performances on the verified annotations
from the model predictions. The main advantage here is that we do model assessment
in unseen and large data. We performed this analysis using the threshold values com-
puted with the procedure described in Section 4.2.3. Table 4.4 synthesizes the results
of HTC 1, 2, and 3 on, respectively, 450, 900, and 1800 radiographs labeled from their
corresponding predictions, also highlighting the best and worst results (we did not assess
HTC 4 as no labels came from its predictions). All metrics increased at each iteration,
but the most significant performance boost came from HTC 1 to HTC 2, when there was
still significant room for improvement. The mAPs of HTC 3 were the best and surpassed
the 80 points on both the detection and segmentation tasks.

Using the HITL labeled data as test data mitigated the problem of the biased es-
timation of the network results and the computed metrics revealed consistent results.
However, some issues persisted: we evaluated the networks on distinct images with dif-
ferent radiograph category proportions and disregarded HTC 4. For those reasons, it
proved imperative to label a separate set of images for a consistent comparison. For that,
we assessed the networks on 400 images (40 for each radiograph category), which we
manually labeled from scratch and comprised our test data set as pointed out in Section
4.2.

4.3.3 Model results on test data

Besides a consistent comparison, our test data set allows unbiased model assessment,
as we manually labeled 40 images per radiograph category exclusively for model evalua-
tion. Table 4.5 synthesizes the results of each trained HTC network over the test data set
accordingly to the detection and segmentation AP50, AP75, and mAP metrics. One can
observe that all segmentation metrics increased at each HITL cycle, being a favorable
indication for the HITL results. The detection metrics also display a prominent increas-
ing tendency, but they may oscillate slightly. These aggregate results give no insights
on the specifics of the network performances. In order to solve that, we analyzed the
segmentation mAP per dentition and tooth type.

Table 4.6 split the segmentation metrics into the dentition types: permanent and
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Table 4.5: Performance metrics of each trained neural network in our HITL system on
the manually annotated test data set. The test data set comprised 400 images (40 per
radiograph category). We highlight the best (green) and worst (red) results per metric.

Detection SegmentationNeural
Networks AP50 AP75 mAP AP50 AP75 mAP
HTC 1 91.9 83.4 72.0 92.2 87.2 72.0
HTC 2 95.4 87.8 75.5 95.7 89.5 74.6
HTC 3 97.0 88.0 75.4 97.6 90.3 75.6
HTC 4 98.4 87.4 76.0 98.9 91.8 77.4

Table 4.6: Segmentation results on the test data set according to the dentition tooth
types: Permanent and deciduous. We highlight the best (green) and worst (red) results
per metric. The metrics over the deciduous teeth were worse but improved significantly
over the HITL iterations.

Permanent DeciduousNeural
Network AP50 AP75 mAP AP50 AP75 mAP
HTC 1 99.0 97.0 82.0 81.5 71.4 56.1
HTC 2 99.0 97.3 82.3 90.4 77.0 62.3
HTC 3 99.1 97.5 82.4 95.3 78.7 64.7
HTC 4 99.1 97.6 82.7 98.5 82.7 69.0

deciduous. The highest (green) and smallest (red) values per metric indicate that the best
predictions are from HTC 4, while the worst are from HTC 1. These metrics demonstrate
small but consistent increasing performances over the HITL iterations on permanent
dentitions. On the other hand, the segmentation results on deciduous teeth improved
significantly: at least 15% on all metrics. The segmentation mAP increased 12.9 points,
which represents a 23.0% gain. This improvement is due to the initial lack of training data
increment (the deciduous teeth constitute approximately 3% of the training instances).
The rare occurrences of deciduous teeth, especially the central and lower lateral incisors,
hindered the first trained networks from generalizing on those tooth types.

Finally, we broke the segmentation mAP by dentition and tooth type in Tables 4.7
(permanent teeth) and 4.8 (deciduous teeth), highlighting the best (green) and worst
(red) results of the networks per tooth type. Table 4.8 also brings the number of instances
presented in the training data sets to illustrate the initial lack of training data. No lower
central incisor was present in the first training iteration (HTC 1), and only 14 were present
in the last (HTC 4). The additional data on those less frequent tooth types resulted in
significantly higher metric values. Table 4.7 unveils that, on the permanent teeth, the
HITL was more beneficial on the segmentation of the upper teeth than the lower ones.
HTC 4 performed better on permanent lower incisors and permanent upper teeth than
HTC 1. According to our annotators, the upper teeth, particularly the premolars and
molars, are harder to segment. We consider this fact, along with the improved metrics on
those tooth types propitiated by the HITL scheme, to subsidize the use of deep learning-
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Table 4.7: The mAP results on the test data set per permanent tooth type. We highlight
the best (green) and worst (red) results per tooth. The HITL benefited more the metrics
over the more challenging to segment teeth, such as the upper premolars and molars.

Incisors Premolars MolarsDental
Arch

Neural
Network Central Lateral Canines 1st 2nd 1st 2nd 3rd
HTC 1 85.1 83.8 84.0 72.9 79.9 78.4 80.7 77.2
HTC 2 85.8 83.9 84.4 73.4 79.9 80.0 80.8 77.7
HTC 3 85.8 84.0 84.8 73.4 81.0 80.1 81.1 77.8Upper

HTC 4 85.9 84.4 84.5 74.7 81.1 79.9 81.6 78.0
HTC 1 79.0 80.8 85.3 84.7 87.3 85.1 84.5 82.9
HTC 2 79.6 80.9 85.9 85.4 87.1 84.4 84.1 83.5
HTC 3 79.9 81.2 85.8 85.0 87.0 84.0 83.8 82.9Lower

HTC 4 79.6 81.6 85.7 85.3 87.3 84.6 84.5 83.8

Table 4.8: The mAP results on test data set and instance count (in parentheses) on
training sets per deciduous tooth type. We highlight the best (green) and worst (red)
results per metric. The metrics over the deciduous teeth were worse on average but
improved significantly over the HITL iterations.

Incisors MolarsDental
Arch

Neural
Network Central Lateral Canines 1st 2nd
HTC 1 35.2 (3) 58.8 (22) 64.8 (70) 64.7 (58) 65.5 (78)
HTC 2 64.6 (7) 55.1 (28) 64.9 (110) 59.8 (79) 62.8 (117)
HTC 3 66.4 (19) 62 (56) 65.2 (206) 59.2 (152) 65.9 (225)Upper

HTC 4 74.7 (45) 64.4 (106) 64.8 (423) 65.4 (322) 68.8 (437)
HTC 1 0 (0) 63 (10) 69 (52) 67.8 (61) 72.2 (73)
HTC 2 41.2 (2) 62.8 (12) 73.2 (74) 66.4 (83) 72.4 (110)
HTC 3 53.7 (8) 66.4 (26) 73 (149) 64.7 (161) 71 (212)Lower

HTC 4 66.8 (14) 72.6 (54) 72.8 (304) 67 (321) 73 (440)

based assist tools to aid in challenging cases. In contrast, the metrics on permanent
lower premolars and molars stagnated or oscillated a bit. The metrics on those teeth,
which are large and straightforward to segment teeth, were already pretty high on the
first iteration, resulting in less room for improvement.

4.3.4 Numbering analysis on test data

The numbering task consists in detecting all tooth instances and correctly classifying
them. This task has a direct practical value, as the radiologists must inform the patients’
missing teeth in the reports. Additionally to this practical application, numbering is
helpful to assess the HITL benefits on a task less sensitive to coarse predictions.

We evaluated the model performances according to their errors, which in the num-
bering task may be grouped in three types:
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Table 4.9: Neural network performances according to the error types on the numbering
task for a 0.5 IoU detection threshold over the test data set. All errors shrank at each
HITL iteration.

Network False Negatives False Positives Misclassifications Total Errors True Positives
HTC 1 111 74 216 401 11,390
HTC 2 85 53 179 317 11,453
HTC 3 78 52 166 296 11,473
HTC 4 41 42 158 241 11,518

• False negatives (when the model does not detect an instance);

• False positives (when the model detects something that is not an instance of an
object of interest);

• Misclassifications (when the model correctly detects an object instance but classifies
it wrongly).

We synthesize these values along with the total errors and the true positives for the
trained networks in Table 4.9 using a 0.5 IoU detection threshold. One can perceive a
consistent performance improvement trend in all values over the iterations. The most sig-
nificant advancement was over the false negatives, reduced by 63%. The misclassification
errors shrank 27%.

The aggregated results from Table 4.9 do not allow a detailed analysis of the number-
ing errors. To solve that, we plotted the confusion matrices according to tooth types. For
brevity, we depict only HTC 1’s and HTC 4’s detection confusion matrices in Figures 4.5
and 4.6, in which we split the matrices into the upper teeth and lower teeth parts for visu-
alization purposes. This division is not harmful to the analyses because misclassifications
between those groups are rare. A performance boost can be observed in all tooth groups
by comparing HTC 1’s and HTC4’s confusion matrices. The upper teeth were slightly
easier to detect and classify for both networks. The deciduous teeth were more challeng-
ing to detect correctly but easier to classify than permanent ones. The misclassifications
were essentially among nearby, same-function teeth, especially the premolars and molars.
The numbering of premolars and molars may be quite challenging in some circumstances,
such as on unhealthy missing-tooth mouths, where dubious situations may occur even for
human experts.

4.3.5 Labeling time analysis

In a HITL setup, we are not only interested in labeling quality, but also labeling speed-
up. Therefore, we monitored the HITL labeling verification and the radiograph manual
labeling times. Figure 4.7 compares those two labeling approaches according to each
annotators’ average time. These time values were measured during the third iteration,
in which we asked our annotators to clock their correction and manual labeling. For the
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(a) HTC 1’s upper teeth confusion matrix.

(b) HTC 1’s lower teeth confusion matrix.

Figure 4.5: HTC 1’s upper and lower teeth confusion matrices for a 0.5 IoU detection
threshold. The last lines are for the false negatives per tooth type, while the last columns
are for the false positives.
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(a) HTC 4’s upper teeth confusion matrix.

(b) HTC 4’s lower teeth confusion matrix.

Figure 4.6: HTC 4’s upper and lower teeth confusion matrices for a 0.5 IoU detection
threshold. The last lines are for the false negatives per tooth type, while the last columns
are for the false positives.



50 DATASETS THROUGH HUMAN-IN-THE-LOOP AND PSEUDOLABELING

Figure 4.7: Comparison of each annotator time for HITL labeling verification time against
manual labeling time, the latter split into segmentation and tooth numbering. The HITL
labeling lasts considerably less (51%) than manual labeling.

manual labeling, they split their time into segmentation and tooth numbering. The latter
is the time to type and assign the tooth class.

From Figure 4.7, one can perceive that the labeling verification procedure was signif-
icantly faster than manual labeling. Labeling radiographs manually lasted on average 14
minutes and 43 seconds per radiograph, while labeling using the HITL concept took 14
minutes and 43 seconds, a 51% time reduction. The annotation verification was faster
than manual segmentation, even if we disregarded the numbering procedure. In that
case, the HITL approach reduced the labeling time by 42% compared to manual label-
ing, which took 12 minutes and 33 seconds on average. If we considered the 51% time
reduction, the HITL procedure saved more than 390 continuous working hours.

4.3.6 HITL bottlenecks

We investigated possible bottlenecks that could have significantly slowed down the
HITL verification procedure. Already in the first iteration, in which we established the
verification protocol, our annotators mentioned several times the presence of serrated
segmentation that comprises most of the correction time. This serrated pattern came
from the 28×28 low-resolution masks and appeared especially on the tooth crowns, but it
was also frequent on the other parts of large and complex-shaped tooth instances, such as
molars. The annotators with no deep learning background considered these incongruous
masks somewhat surprising, as the crowns are usually well-defined and easier for humans
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Figure 4.8: Frequency of corrections according to tooth part. The crown segmentation
was adjusted in more than 85% of the corrected instances in all HITL iterations.

to segment. For segmentation models, the tooth crowns are fine-detailed objects with
acute borders, which hampers the segmentation task.

In order to understand how much impact these jagged contours have in the HITL,
we quantified the correction fractions related to tooth parts: Crown, middle, root, or a
combination of them, including correction on all tooth parts. We automatically split each
tooth instance into these three parts in the vertical axis for this analysis and measure the
frequency of the modifications in each part, disregarding the size of the changes.

Figure 4.8 summarizes the obtained results, showing the frequency of parts where
the correction took place at each iteration. One can perceive that, in all iterations,
adjustments in the crown segmentation have been made in more the 85% of the corrected
instances. These adjustments were highly frequent, mainly due to the serrated patterns
and heavily slowed down the verification process. Possible solutions to reduce this issue
when neglecting these tiny errors is not an option include increasing the segmentation
mask resolution, employing a two-stage instance segmentation approach, or using a more
specialized method, such as the PointRend module.

4.3.7 Qualitative analysis

The quantitative analyses guided our qualitative analyses. We focused on the best
and worst results according to the primary metric, comparing the ground truth with the
network predictions and the verified labels. Figures 4.9 (a) and (b) illustrate the best and
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the worst HTC 4’s results, respectively, according to the segmentation mAP on the test
data set. Figure 4.9 (a) corresponds to a well-focused, crisp and clear radiograph from
a 32-teeth healthy mouth, characteristics common to the best results. From the zoomed
area, we see that the annotation correction led to a final label closer to the ground truth
and also less noisy.

The worst result, illustrated in Figure 4.9 (b), came from a slightly blurry image from
an unhealthy mouth, a common pattern in the radiographs of the worst results. However,
in this case, the network performance was reasonably good, and the low metric was due
to main factors. First and most important, the annotator wrongly labeled the teeth 32,
33, 34 and 35 respectively as teeth 31, 32, 33 and 34, probably due to a sequence of typos,
which reduced the segmentation mAP significantly. Second, the presence of radiolucent
material prostheses and restoration encumbered the segmentation task for both model and
annotator. The zoomed area shows that model undersegmented those spots, which were
adjusted by the annotator, but still missed some areas. The other annotation corrections
smoothed the noisy borders and reduced the difference from the ground truth labels.
We additionally illustrate in Figure 4.9 (c) a sample result on a mixed dentition mouth.
These radiographs are challenging for models and human annotators due to overlapping.
In this particular image, there are also occlusions between posterior teeth, hardening the
task. However, the model prediction proved to be adequate, even before the labeling
verification. The zoomed area shows that the corrections reduced the gap to the manual
ground truth labels, but there were some divergences for root segmentation of teeth 54
and 55.

4.4 SUBMISSION PLATFORM, EVALUATION PROTOCOLS, AND BASELINES

Our data set comprises 4000 labeled radiographs (850 manually labeled and 3150 HITL
labeled), from which 2000 are used for solution assessments in the OdontoAI platform1.
The platform consists of a website where researchers can submit their predictions in a
standardized fashion, enabling a fair benchmarking of the proposed methods. We provide
2000 radiographs along with their labels (650 manually labeled and 1350 HITL labeled
radiographs) for model training and validation. The remaining 2000 images (1800 labeled
in the HITL scheme and 200 manually labeled) do not have their labels publicly available
and consist of the platform test set. We also provide in the platform precise instructions
on how to submit solutions and open-source codes of the used metrics and for creating
the submission files.

We configured three benchmarks for the OdontoAI platform, comprising classical
computer vision tasks useful for analyzing dental panoramic radiographs. The tasks
are tooth instance segmentation, semantic segmentation, and numbering, which
we detail in the following sections together with the selected metrics. As baselines, we
included the results of neural networks trained on the 2000 publicly available labeled
radiographs architectures using the architectures presented in our instance segmentation
benchmark (Section 4.2.2).

1The platform link will be available upon the article’s acceptance and publication.
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(a) HTC 4’s best result, which happened on a well-focused, crisp and clear radiograph from a
32-teeth healthy mouth, characteristics common to the best results.

(b) HTC 4’s worst result, which happened on a slightly blurry radiograph from an unhealthy
mouth with radiolucent material prostheses.
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(c) Sample of HTC 4’s results on a mixed dentition radiograph.

Figure 4.9: HTC 4’s best and worst results according to the segmentation mAP on the
test set, and an additional result sample on a mixed dentition radiograph. The illustra-
tions compare the predictions before and after the corrections by the annotators. The
zoomed areas highlight the matched segmentation, undersegmentation, and oversegmen-
tation with the ground truth labels, evincing that the corrections led the final labels to
be less noisy and closer to the ground truth.

4.4.1 Instance segmentation task

The instance segmentation task is a straightforward application of our data set. This
task is challenging and comprehensive, as it combines instance detection and segmenta-
tion. Many researchers investigate instance segmentation due to its usefulness, but lack
of data may be an issue. Our data set solves this problem.

We chose mAP as the main metric to evaluate instance segmentation. A rigid metric
is necessary, as our experiments showed that the AP50 and AP75 are rather loose metrics
to the task. The adopted metric, mAP, is not only stricter but also more comprehensive,
being suitable for the instance segmentation task benchmark of the OdontoAI platform.
AP50 and AP75 are included as secondary metrics as well the equivalent metrics for
detection with bounding boxes. Table 4.10 illustrates a sample of the benchmark ranking
available in our platform, with the attained results by the baselines.
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Table 4.10: A sample of the OdontoAI platform benchmark ranking for the instance
segmentation task with baselines.

Detection SegmentationRank Architecture AP50 AP75 mAP AP50 AP75 mAP
1 HTC 0.924 0.964 0.821 0.941 0.964 0.821
2 DetectoRS 0.920 0.967 0.803 0.933 0.967 0.809
3 Cascade R-CNN 0.893 0.951 0.786 0.920 0.952 0.790
4 Cascade R-CNN with DCN 0.875 0.930 0.773 0.886 0.931 0.770
5 Mask R-CNN 0.868 0.935 0.749 0.893 0.936 0.760
6 ResNeSt Cascade R-CNN 0.866 0.903 0.764 0.849 0.903 0.652
7 ResNeSt Mask R-CNN 0.825 0.879 0.726 0.828 0.880 0.637

Table 4.11: A sample of the OdontoAI platform benchmark ranking for the semantic
segmentation task with baselines.

Rank Architecture Accuracy (%) Specificity (%) Precision (%) Recall (%) F1-score (%) IoU (%)
1 HTC 98.8 99.5 98.2 96.2 97.2 94.5
2 DetectoRS 98.7 99.4 97.8 96.1 96.9 94.1
3 Cascade R-CNN 98.7 99.4 97.7 96.1 96.9 94.0
4 Cascade R-CNN with DCN 98.7 99.5 98.0 95.6 96.8 93.8
5 Mask R-CNN 98.6 99.3 97.4 95.9 96.6 93.5
6 ResNeSt Cascade R-CNN 97.0 98.6 94.7 91.2 92.9 86.7
7 ResNeSt Mask R-CNN 97.0 98.5 94.3 91.3 92.8 86.5

4.4.2 Semantic segmentation task

Semantic segmentation is also a basilar task in computer vision, being the reason why
we included it in our platform’s benchmarks. The tasks consist of segmenting classes
precisely as possible, disregarding object instances. In our benchmark, there is only one
class (tooth), and the researchers should propose methods to distinguish it from the
background. Due to this dichotomic nature, we employed the usual metrics for binary
segmentation: accuracy, specificity, precision, recall, f1-score, and IoU. The latter is the
main metric, and it is equivalent to the binary mIoU, a commonly used metric in semantic
segmentation benchmarks.

Table 4.11 shows a sample of the benchmark ranking at the OdontoAI platform for
the semantic segmentation task. The baseline metrics were computed after converting
the instance segmentation predictions of the networks into segmentation masks.

4.4.3 Numbering task

Finally, we included the task of “numbering," which is almost equivalent to the multi-
label classification computer vision task. It slightly differs from the multi-label classi-
fication task because one or more supernumerary teeth may appear. In the numbering
task of our benchmark, the goal is to predict the present teeth in the panoramic radio-
graph. Although this task may not be advantageous as a preprocessing step for analyzing
panoramic radiographs, it naturally appears in practical applications such as form fillings
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Table 4.12: A sample of the OdontoAI platform benchmark ranking for the numbering
task with baselines.

Rank Architecture Exact Match (%) Micro Accuracy (%) Micro Precision (%) Micro Recall (%) Hamming Loss
1 HTC 67.9 98.6 98.8 98.5 0.0143
2 DetectoRS 66.2 98.4 98.7 98.3 0.0164
3 Cascade R-CNN with DCN 65.7 98.4 98.7 98.3 0.0161
4 Cascade R-CNN 62.8 98.2 98.5 98.2 0.0177
5 ResNeSt Cascade R-CNN 60.7 97.9 98.4 97.8 0.0206
6 Mask R-CNN 59.0 98.0 98.5 97.8 0.0197
7 ResNeSt Mask R-CNN 56.3 97.7 98.4 97.3 0.0231

and automatic report generation. While reports customary document the patient’s per-
manent missing teeth, the OdontoAI platform’s numbering task expects a list of present
teeth. We chose this conventional because deciduous and supernumerary teeth may occur.

Our experiments showed that it is easy to identify the present teeth correctly. Through
a general instance segmentation (HTC 4 neural network), the numbering task resulted in
only 241 errors among false positives, false negatives, and misclassifications. Therefore,
we chose a rather rigorous metric main metric, “exact match,” in which a true positive is
only taken into account when all tooth numbering predictions are correct. Other than the
main metric, the OdontoAI platform includes other metrics, such as micro accuracy, micro
precision, micro recall and Hamming loss. The Hamming loss averages the fraction of the
incorrect predictions for each label. We illustrate in Table 4.12 a sample of numbering
benchmark ranking found at the OdontoAI platform.

4.4.4 Training Instance Segmentation Network for Tooth Crop Generation

The experiments with the HITL approach confirmed that we could train sufficiently
accurate instance segmentation networks. As a result, we proceeded with generating the
tooth crops necessary for our framework to function. The main goal here was to train
an instance segmentation neural network, specifically the HTC, as it was the winner
architecture in our coducted bencmark, to detect and number the teeth to generate the
crops subsequently. Following the previous setup, the trained HTC used a ResNeXt neural
network as its backbone with 101 layers and a cardinality of 64 (XIE et al., 2017). The
initial weights of this network were derived from the training on the ImageNet dataset to
leverage the transfer of the learning technique later. The training data comprised 4,000
images from the O2PR dataset. No data was allocated for testing, emphasizing that the
goal was not efficiency measurement but tooth crop generation for the subsequent phases.

Data augmentation was purely horizontal flips, carefully changing the labels of the
teeth from the right side to the left and vice versa. To optimize network performance,
the radiographs were cropped from their prevailing 2,440 × 1,292 pixels to 1,876 × 1,036,
removing 159 pixels from the top, which resulted in more focused teeth. The batch size
was 1 (one), and the optimizer was stochastic gradient descent, with a learning rate of
0.0015, momentum of 0.9, and no weight decay. The threshold value for tooth detection
was 0.5. The network was trained for 20 epochs in an NVIDIA GeForce GTX TITAN X.
After training the neural network; it was applied to the 12,824 unlabeled images from the
RPR and TRPR datasets. This allowed one to create tooth crops for all the radiographs
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in the used images. Fig. 4.10 shows two samples of the instance segmentation results, in
an adult’s and a child’s mouth, using the color code introduced in Fig. 2.1, demonstrating
its strong performance.

4.5 CLOSURE

This chapter detailed the construction process of the datasets employed in this study,
which included two distinct datasets: full-size labeled panoramic radiographs and tooth-
centered labeled crops. The adoption of the Human-in-the-Loop (HILT) approach was
particularly effective, significantly accelerating the labeling process for the full-size dataset.
Instance segmentation neural networks were trained on these datasets, yielding excellent
performance. These promising results provided the necessary confidence to leverage the
trained networks to generate the tooth crop dataset based on network predictions.
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(a) Instance segmentation results of a panoramic radiograph of an adult’s mouth.

(b) Instance segmentation results of a panoramic radiograph of a child’s mouth.

Figure 4.10: Qualitative results of the trained instance segmentation neural network,
using the color code introduced in Fig. 2.1.



Chapter

5
CLASSIFICATION OF DENTAL CONDITIONS

5.1 INTRODUCTION

The crop generation discussed in the previous Chapter reduced the instance segmen-
tation problem to a classification task. This change in perspective clearly simplifies the
problem, as classification tasks are easier than detection tasks. Under these circum-
stances, we were able to use Vision Transformer (ViT), a state-of-the-art classification
network. In our setup, another advantage emerges: we could leverage the unlabeled data
from the RPR and O2PR datasets by utilizing Masked Autoencoders (MAE) directly in
conjunction with the ViT. We discuss our experimental analysis in the following.

5.2 EXPERIMENTAL ANALYSIS

We conducted a thorough experimental analysis to evaluate the performance of the
different setups. The goal was to assess the impact of MAE-based pretraining and varying
crop sizes on classification accuracy. For each setup, we measured the network’s classifi-
cation performance across a range of dental conditions, tracking the MCC metric on both
the validation and test sets. We also set baseline networks without pretraining providing
a reference point for comparison.

5.2.1 Neural network pretraining

The MAE technique was exploited to pretrain neural networks for subsequent transfer
learning to final classification networks for each dental condition. All the available data
of tooth crops was used for pretraining the ViTs, reserving some images for validation
and testing purposes (see Table 3.4). The experiment encompassed three scenarios: the
first employed a baseline network devoid of pretraining, the second involved networks
pretrained on the ImageNet dataset, and the third used custom-generated tooth crops.
Each scenario was executed twice, accommodating both crop configurations: 224x224
crops (less context) and 380x380 crops (more context), culminating in six distinct exper-
imental setups:

59
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Figure 5.1: Reconstruction sample from a pretrained neural network using MAE as a
pretraining strategy. The reconstruction showcases the efficacy of MAE in enhancing the
network’s reconstructive capabilities.

• Less context crops without pretraining
• Less context crops pretrained on ImageNet dataset
• Less context crops pretrained on Crops dataset
• More context crops without pretraining
• More context crops pretrained on ImageNet dataset
• More context crops pretrained on Crops dataset

In pretraining scenarios, data augmentation techniques used horizontal flip and ran-
dom resized crop, with scales ranging from 0.2 to 1. The batch size was 512, and the
optimizer was AdamW with a learning rate of 9.5 × 10−4, betas of 0.9 and 0.95, and
no weight decay. The network was trained for 800 epochs with a linear warm-up in
the first 40 epochs. The hardware used for training was eight NVIDIA A100 of 80 GB.
The depicted sample in Fig. 5.1 showcases the considerable qualitative success of the
reconstruction outcomes from the pretraining configuration using tooth crops.

5.2.2 Label extraction

In this phase, OpenAI’s LLM GPT-4 was used to streamline and expedite the extrac-
tion of noun phrases from textual reports of the TRPR dataset. For the current study, the
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Figure 5.2: Bar chart of the 27 most common noun phrases, showing their frequency
and trends, and illustrating their long tail distribution. Noun phrases identified as dental
conditions are highlighted with red bars, while those not selected are represented with
blue bars.

frequency of all noun phrases was gauged, and only those with occurrences higher than
150 were considered. This threshold was chosen arbitrarily, believing it to represent the
minimum necessary for a network to learn effectively. Afterward, similar phrases, such as
“unfilled root canal” with its plural form “unfilled root canals”, were manually grouped.
As not all noun phrases are dental conditions, the selection was refined through manual
filtering. For example, “endodontic treatment” is a dental condition, whereas “clinical
assessment” is not and, therefore, was excluded from the analysis. Fig. 5.2 displays a bar
chart depicting the 27 most common noun phrases, their frequency, and trends, evincing
their long tail distribution. Noun phrases identified as dental conditions are marked with
red bars, whereas those not selected are shown with blue bars.

In the end, the descriptions of the selected dental conditions, each assigned a unique
numerical index and ordered by their frequency of occurrence (indicated in parentheses),
were:

1. Endodontic treatment (4,994) - a procedure that treats infections inside the tooth,
typically involving the removal of the pulp and nerves, followed by the filling and
sealing of the pulp chamber and root canals.

2. Coronal destruction (1,866) - Damage or decay to the crown portion of the tooth.

3. Included and impacted (1,532) - Teeth trapped within the jawbone or gums and
cannot erupt naturally.
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4. Periapical bone rarefaction (1,486) - A reduction or loss of bone density around the
apex of a tooth root, often due to inflammation or infection.

5. Unfilled root canals (1,194) - Root canals that have not been filled or sealed after
an endodontic procedure.

6. Metallic core (1,091) - A metal post used to support a restoration or crown, espe-
cially in a tooth undergoing endodontic treatment.

7. Root fragment (964) - A piece or portion of a tooth root left behind, typically after
tooth extraction or breakage.

8. Increased apical periodontal space (922) - Enlargement of the space around the
tooth root’s apex, which may indicate an inflammatory response.

9. Trabecular bone modification (773) - Changes in the spongy part of the bone, which
can be indicative of disease or other conditions.

10. Extensive restoration (573) - Large dental fillings or excessive material used in a
dental restoration.

11. Idiopathic osteosclerosis (470) - A localized increase in bone density without a
known cause.

12. Unfavorable positioning for eruption (200) - The positioning of a tooth that hinders
its natural eruption process.

13. Prolonged retention (181) - The extended presence of a tooth or dental element
beyond its normal duration, often referring to baby teeth that don’t fall out on
time.

Fig. 5.3 displays examples of each condition. Upon determining the conditions to
be evaluated, the adopted linkage process, which associates every tooth mentioned in a
sentence with all the dental conditions stated in that sentence, was applied as described
in Section 3.4.3.

5.2.3 Classification neural network training

The TRPR dataset was split into train (70%), validation (15%), and test (15%)
subsets for training and evaluation (see Table 3.3). The tooth crops were 224 × 224
without resizing (less context), or the 224 × 224 resized from 380 × 380 (more context)
crops. Data augmentation techniques used were horizontal flip 50% of the time, 10 degrees
random rotation, and color jitter with parameters 0.2 for brightness, 0.2 contrast, and
0.2 saturation. The positive classes were oversampled by a factor of 10 due to their
insufficient representation. The batch size was 64, and the optimizer was AdamW with a
base learning rate of 10−3, betas of 0.9 and 0.95, and no weight decay. The network was
trained for 50 epochs with no linear warm-up. The hardware used for training was eight
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Figure 5.3: Dental conditions considered in this study. (They were selected according to
their frequency in the textual reports.)

NVIDIA A100 of 80 GB. Finally, the loss was binary cross entropy (BCE) plus MCC loss
were calculated:

BCE(y, ŷ) = − 1
N

N∑
i=1

(yi · log(ŷi) + (1 − yi) · log(1 − ŷi)) , (5.1)

where N is the number of samples, y is a vector of the target labels, and the ŷ is the
vector of the predicted probabilities.

The MCC loss is given by 1−MCC, where a small value was added on the denominator
of Eq. 3.1 to avoid division by 0 (zero).

The final loss is

Loss = α · BCE(y, ŷ) + (1 − α) · (1 − MCC(y, ŷ)) . (5.2)

Here, α = 0.5.

5.2.4 Results and discussions

Table 5.1 showcases the primary numerical MCC results. It presents, for each tooth
condition (Label), the positive class sample size frequency (Freq.), the Validation
outcomes for each pretraining configuration, the maximum MCC value on validation
datasets (Max Val.), and the Test results. One can conclude from the validation average
values that the no-pretraining configurations, indicated in Tables 5.1 and 5.2 by the
column None, had the worst results both on the less-context and more-context tooth
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Table 5.1: Results based on the MCC values from the validation and test sets indicate
that pretraining with the ImageNet and Crops dataset was beneficial.

Label Freq.

Validation

Max Val. Test224 × 224 crops
(less context)

380 × 380 crops
(more context)

None ImageNet Crops None ImageNet Crops
1 4,994 0.864 0.903 0.904 0.827 0.847 0.846 0.904 0.865
2 1,866 0.421 0.668 0.714 0.300 0.663 0.675 0.714 0.658
3 1,532 0.681 0.767 0.740 0.649 0.776 0.790 0.790 0.683
4 1,486 0.455 0.589 0.598 0.487 0.498 0.523 0.598 0.397
5 1,194 0.264 0.454 0.445 0.455 0.611 0.595 0.611 0.436
6 1,091 0.653 0.677 0.695 0.150 0.711 0.750 0.750 0.632
7 964 0.318 0.532 0.510 0.167 0.728 0.668 0.728 0.583
8 922 0.142 0.275 0.270 0.394 0.399 0.405 0.405 0.327
9 773 0.000 0.301 0.309 0.649 0.506 0.458 0.649 0.218
10 573 0.000 0.385 0.286 0.000 0.284 0.314 0.385 0.252
11 470 0.000 0.182 0.182 0.000 0.424 0.414 0.424 0.347
12 200 0.299 0.336 0.420 0.302 0.430 0.456 0.456 0.353
13 181 0.240 0.577 0.666 0.211 0.386 0.545 0.666 0.426
Average 0.334 0.511 0.519 0.353 0.559 0.572 0.622 0.475

crop scenarios. In contrast, the pretraining from the tooth crop dataset, indicated in the
tables by Crops, had the best average results in both cases. Pretraining with tooth crop
data outperformed ImageNet pretraining, on average, by 6.73 percentage points (p.p.)
and 1.14 (p.p.) in the less-context and more-context tooth crops, respectively. Despite
containing approximately 460,000 images–far fewer than the ImageNet dataset’s more
than 17 million–pretraining with tooth crop data proved more efficient due to the field-
oriented data context. The faster convergence of tooth crop pretraining configurations
demonstrates its efficiency. Table 5.2 shows that tooth crop pretraining configurations
perform more optimally in fewer epochs than those pretraining with ImageNet.

The test set’s results in Table 5.1 were derived from the top-performing network based
on the validation sets. Notably, while the test MCC values exhibit considerable variation,
they all exceed 0 (zero), indicating performance better than random guessing. Further-
more, according to the positive sample size, the metrics show a noticeable increasing
trend. This trend is illustrated in Fig. 5.4, a scatter plot of the data, where the trend
was computed using a linear function. The linear function R2 reached 0.575. R2 is a
statistical measure of how well a mathematical equation represents a set of data. An R2

between 0.5 and 0.7 indicates a substantial fit, meaning the model reliably explains a
significant portion of the variance in the data.

While the size of the positive sample contributes to the MCC trend, it does not account
for all of it. A deeper understanding of the challenges in classifying different classes offers
more insight into how well the network performs. For instance, some conditions are not
in the teeth but around them (e.g., in the gum), requiring more image context. These
idiosyncrasies are discussed in the following, indicating in parentheses which configuration
performed better, whether with less context or more context in the panoramic.
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Table 5.2: Analysis of epoch convergences (values in the table), based on the highest
MCC value on the validation sets.

Label Freq.

Validation
224 × 224 crops

(less context)
380 × 380 crops
(more context)

None ImageNet Crops None ImageNet Crops
1 4,994 44 38 11 40 7 7
2 1,866 36 14 23 35 8 13
3 1,532 42 23 26 43 15 30
4 1,486 37 14 13 34 9 10
5 1,194 38 11 11 40 24 11
6 1,091 44 25 21 21 8 11
7 964 32 25 11 34 24 7
8 922 37 3 9 28 6 6
9 773 0 23 6 0 26 17
10 573 0 5 12 18 19 1
11 470 0 16 6 0 6 2
12 200 25 4 19 41 6 3
13 181 38 8 10 27 18 11
Average 29 16 14 28 14 10

1. Endodontic treatment (less context)
An endodontic treatment appears as white (radiopaque) lines in the tooth canals
(refer to Fig. 5.3 (a)). Therefore, an image crop close and centered on the teeth
eases the task of identifying this condition. This configuration is the case for the
224 × 224 crops. Together with the large amount of positive data, this resulted
in a MCC higher than 0.900 on the validation data, while the resize crops from
380 × 380 dimensions reached 0.845 MCC.

2. Coronal destruction (less context)
Coronal destruction appears as darker areas (radiolucencies) because the structure
is less dense than a healthy tooth. This decay can be seen as disruptions in the
continuous outline of the tooth crown, especially around or underneath existing
dental restorations. Therefore, a close, near-the-tooth crop is sufficient for detecting
coronal destruction, as depicted in Fig. 5.3 (b). In this case, a maximum of 0.714
was reached from the less-context crops against 0.675 of the more-context one.

3. Included and impacted (more context) It refers to a tooth that has not erupted
into its expected position in the dental arch due to obstruction by another tooth,
bone, or soft tissue (Fig. 5.3 (c)). This phenomenon occurs frequently with wis-
dom teeth (third molars). Depending on its location, the impacted wisdom tooth
can be seen pressing against or tilted towards its neighboring second molar, poten-
tially causing root resorption or displacement. Therefore, a minimal increase in the
context of the tooth crop may be beneficial to identify inclusions. The maximum
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Figure 5.4: Scatter plot of the MCC results on the test set. (The red line shows the MCC
increasing trend according to the frequency of the dental condition in the dataset.)

attained results from more-context tooth crops (0.790) were 2.3 (p.p.) higher than
the less-context counterpart (0.767).

4. Periapical bone rarefaction (less context)
Periapical bone rarefaction appears as a darker area (radiolucent) around the tooth’s
root or at its apex (see Fig. 5.3 (d)). This dark spot indicates bone loss or decreased
bone density. The borders of this area can be well-defined or more diffuse, depending
on the nature and stage of the condition. Under these circumstances, having a well-
focused image around the teeth is better, or even necessary, to better diagnose this
condition. Here, the less context reached 0.599 against 0.523.

5. Unfilled root canals (more context)
On a panoramic radiograph, unfilled root canals within a tooth appear as relatively
dark lines or canals within the lighter, radiopaque outline of the tooth structure
(refer Fig. 5.3 (e)). These dark lines represent where the dental pulp once was and
should generally be filled with endodontic materials if a root canal treatment has
been completed. In those conditions, a well-focused image is better for classification.
In the current setup, the networks trained with more-context crops attained an
MCC of 0.611 and the less-context crops of 0.454.

6. Metallic core (more context)
On a panoramic radiograph, a “metallic core” within a tooth appears as a highly
radiopaque area within the tooth structure, often in the shape of a post or a dense
filling (see Fig. 5.3 (f)). It stands out distinctly against the less dense surrounding
tooth material and any dental restorations that are not metal-based. However, since
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it is not a part of the tooth, the crop center excludes the metallic core “crown”.
More context is expected to help the classification in light of this situation. A value
of 0.75 for MCC in the more-context configuration and 0.695 in the less-context
was reached.

7. Root fragment (more context)

On a panoramic radiograph, a “root fragment” appears as a radiopaque structure,
resembling a part of a tooth’s root, as shown in Fig. 5.3 (g). It is usually isolated,
without a crown portion, and may be surrounded by a darker area if inflammation
or bone resorption is present. The need to screen the tooth’s surroundings makes
having more context in the image important. Results of 0.728 and 0.532 were
achieved in less-context and more-context scenarios, respectively.

8. Increased apical periodontal space (more context)

On a panoramic radiograph, an increased apical periodontal space, displayed in Fig.
5.3 (h), appears as an enhanced or widened radiolucent area around the tip of the
root of a tooth. This dark gap, known as the periodontal ligament space, is usually
uniform and thin around the roots of healthy teeth. Bearing this in mind, a closed,
well-focused image around the tooth’s center may exclude the dental condition,
making its diagnosis impossible. Therefore, an image with more context is more
beneficial for detecting an increased apical periodontal space. The current study
reached a 0.405 MCC in the more context scenario against a 0.275 in the less context
(i.e., a performance boost of 47.27%).

9. Trabecular bone modification (more context)

On a panoramic radiograph, a “trabecular bone modification” may appear as changes
in the pattern and density of the bone, as shown in Fig. 5.3 (i). Areas with increased
density will look whiter, indicating a more solid bone structure, while regions with
decreased density will appear darker, suggesting less bone mass. The regular mesh-
like pattern of the trabeculae might appear disrupted or altered, which can indicate
various dental or bone conditions. These areas appear on the bones surrounding the
teeth, not near their center. Therefore, a crop with more context is beneficial for
diagnosing trabecular bone modification. In the more-context scenario, we attained
0.506 of MCC; in the less context, we attained 0.309 on the validation datasets.

10. Extensive restoration (less context)

On a panoramic radiograph, “extensive restoration”, or “excess restorative mate-
rial”, appears as a filling, crown, or other dental work, that extends beyond the
natural contours of the tooth, as displayed in Fig. 5.3 (j). Typically used for fill-
ings or crowns, these materials will stand out as they are denser than the tooth
and absorb more X-rays. If overfilled, excess material may also be seen beyond the
confines of the tooth’s normal borders, such as in the interdental spaces or the pulp
chamber. Restorative material frequently occurs on the tooth crown, a distance
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from the tooth center. Therefore, cropping too closely may hinder accurate diagno-
sis. In the current analysis, the images were not excessively cropped, which allowed
for a correct diagnosis with less contextual information. Specifically, an MCC of
0.385 was observed in scenarios with less context compared to 0.314 in scenarios
with more context.

11. Idiopathic osteosclerosis (more context)
On a dental radiograph, “idiopathic osteosclerosis” appears as a brighter area due
to increased bone density (Fig. 5.3 (k)). It is often seen near the roots of teeth
but lacks the characteristic dark border of other lesions. Therefore, the view of the
tooth’s surroundings could be beneficial for detecting it. The results were 0.424 in
the more-context scenario and 0.182 in the less-context one.

12. Unfavorable positioning for eruption (more context)
An “unfavorable positioning for eruption” for a tooth appears as a tooth that is
misaligned with the normal arch form, often at an abnormal angle or location that
suggests it will not erupt into a functional position without intervention (see Fig.
5.3 (m)). This could be a tooth that is tilted, rotated, or horizontally displaced.
The context around the tooth is important to verify and confirm if its position
is unfavorable for eruption. Indeed, the results in the more-context scenario were
0.456 against 0.420 in the less-context scenario (an increase of 8.57%).

13. Prolonged retention (less context)
“Prolonged retention” of a tooth is indicated by a tooth that remains in the jaw
beyond the typical age of exfoliation without evidence of natural shedding or erup-
tion (Fig. 5.3 (n)). It often appears as a tooth with roots that may be resorbed,
situated in the jaw without movement, potentially affecting the positioning of adja-
cent teeth or the eruption of successor permanent teeth. These deciduous teeth are
small and do not require a larger context for diagnosis of prolonged retention. A
value of 0.666 was reached in the context scenario against 0.545 in the more context
one.

5.3 COMPARISON WITH DENTISTRY PROFESSIONALS

The performance evaluation on a large and diverse dataset indicates that the pro-
posed framework has learned, as all MCCs exceeded 0 (zero). However, these values do
not provide a desirable comparison to the performance of human professionals when eval-
uating panoramic radiographs. To make this comparison, annotations made by dentistry
professionals were assessed and compared against the results of the classification models’
predictions. This was accomplished by inviting five final-year undergraduate students
(junior annotators) and five radiologist experts (senior annotators) to label some samples
of the same test images used to evaluate the classification models.

In the labeling setup, each participant had to label a cropped panoramic radiograph
centered on a specific tooth, similar to the images used for training and evaluating the
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models. The images in the setup were the same as the “more-context” 380 × 380 crops,
but without resizing to 224 × 224, which was previously necessary to meet the model’s
input requirements. The dentistry professionals had to identify and mark all visible dental
conditions in the area of the central tooth in the crop, based on the provided options (all
the conditions considered in this study), or mark none, according to their analysis.

A hurdle that needed to be overcome in this procedure was the number of test images
to be annotated. According to the estimates, there were about 32,000 test images (please
refer to Table 3.4), which would require more than 300 hours of continuous work for each
participant to label, making it impractical. A natural alternative was to sample a subset
of the test set while maintaining the positive/negative class proportions. Unfortunately,
this option also proved unworkable due to the highly imbalanced datasets. For instance,
the positive/negative ratio for condition 13 (prolonged retention) is 0.106. In this case,
the professionals would need to annotate approximately 1,180 samples to maintain the
proportional ratio, with only one being positive. Annotating such a large number of image
crops was beyond reasonable feasibility. The issue was overcome by selecting images
through a strategy that ensured a minimum number of positive examples and variability.
The adopted strategy consisted of selecting 78 samples (six images per condition) using
the following pattern: for each condition, two true positives (TP), two false positives
(FP), and two false negatives (FN) were selected based on the original models’ predictions.
According to the labels extracted from the reports, this approach ensured at least four
positive samples (the two TPs and the two FNs) and two negative samples (FP). It also
provided potential variability due to the FP and FN typically being borderline cases.
This final set of images is designated as Expert Image Dataset.

5.3.1 Initial assessment

Table 5.3 shows the results for each professional and the average results for the stu-
dents and experts, considering the labels from the text reports as the ground truth. The
outcomes indicate that the expert group performed moderately better than the students
(0.429 vs. 0.455 MCC). The attained MCC by the used models was 0.475 (Table 5.1),
which is higher than the scores of both groups, demonstrating strong performance. How-
ever, one cannot assert that the models have reached superhuman performance because
the scenario is biased in favor of the models. Rather than being trained to detect dental
conditions in general, the models were trained to detect conditions as the primary labeler
(reports), giving them an advantage over professionals who did not have access to the
annotator samples. This issue was mitigated by combining the expert labels, as discussed
below.

5.3.2 Definitive assessment with expert consensus

The original training, validation, and testing labels were derived from textual re-
ports. Under these conditions, the models trained and validated on these datasets had
an advantage over professionals, as with the proposed solution, when benchmarked. To
mitigate this bias in the models’ performance, the labels provided by the professionals
were leveraged to create a new ground truth.
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Table 5.3: Average MCC for each student and expert (the average value for each group
is also included.)

Student Avg. MCC Expert Avg. MCC
Student 1 0.479 Expert 1 0.394
Student 2 0.500 Expert 2 0.589
Student 3 0.360 Expert 3 0.387
Student 4 0.435 Expert 4 0.455
Student 5 0.372 Expert 5 0.452

All Students 0.429 All Experts 0.455

Table 5.4: Final average MCC of all conditions for each student and expert, including
the average value for each group.

Student Avg. MCC Expert Avg. MCC
Student 1 0.527 Expert 1 0.607
Student 2 0.591 Expert 2 0.689
Student 3 0.490 Expert 3 0.499
Student 4 0.516 Expert 4 0.575
Student 5 0.426 Expert 5 0.574

All Students 0.510 All Experts 0.589

It was assumed that the expert could generate the most accurate labels. Therefore, it
was decided that, for the proposed solution and the students, the new ground truth for
the Expert Image Dataset would be generated by combining the labels from all experts.
This setup not only avoided favoring the proposed solution but also increased robustness
and reduced labeling noise, as a majority vote of the annotators created the new labels.
For the experts, a leave-one-out layout was built where, for each of the five rounds, the
ground truth was computed from the labels of four experts, and the remaining specialist
was evaluated against this new ground truth.

Under this new layout, the results for the models and the average results for the
students and experts were 50.8%, 51.0%, and 58.9%, respectively. The detailed results
for each participant are included in Table 5.4. It is possible to draw two conclusions from
these numbers. Firstly, the MCC values are considerably higher than those attained on
the reports’ ground truth. This increase can be attributed to the more robust ground
truths that were less noisy, as the combination of the labels of several experts generated
them. Furthermore, the similarity between the MCCs attained by the proposed solution
and the students (50.82% vs 51.00%) led one to conclude that the proposed solution
reached the level of a junior professional.

Fig. 5.5 depicts a bar chart that further investigates the results, breaking them down
by classes and predictors (models, professionals, students, and experts). One can observe
that the proposed solution, when compared to the professionals, demonstrates signifi-
cantly higher performance in Condition 5 (unfilled root canals) and considerably worse
performance in Condition 12 (unfavorable positioning for eruption) and 13 (prolonged
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Figure 5.5: Bar chart that breaks down the definitive assessment results according to
condition and professional group. The results on Condition 9, trabecular bone modifica-
tion were closer to zero.

Table 5.5: Frequency of positive samples, Fleiss’ Kappa and model’s MCC on the definite
evaluation set for each condition dental condition.

Condition 1 2 3 4 5 6 7 8 9 10 11 12 13
Frequency 24 10 4 7 6 10 5 5 6 5 6 4 4

Kappa 0.776 0.506 0.601 0.479 0.234 0.750 0.700 0.256 0.045 0.389 0.485 0.336 0.468
MCC 0.819 0.749 0.526 0.577 0.620 0.755 0.688 0.264 0.000 0.369 0.514 0.397 0.330

retention), the ones of less positive samples. However, what stands out the most is the
almost null MCC values for condition 9 (Trabecular bone modification) class. One can
hypothesize that this result stemmed from a lack of agreement among this class’s experts.
It can be expected that the higher the agreement between the labelers, the higher the
MCC of the model is attained. Consequently, it was decided to conduct a statistical
agreement analysis on the ground truth labels.

5.3.3 Statistical agreement analysis

The statistical agreement analysis aims to evaluate the consistency among the ground
truth labelers, who, here, are the experts. Fleiss’ Kappa is a statistical measure used to
assess the reliability of agreement between multiple raters for categorical items (FLEISS,
1971). Fleiss’ Kappa was employed to evaluate the consistency of diagnostic decisions
made by multiple experts on dental conditions

Table 5.5 contains the frequency of positive samples for each condition, the attained
MCC values of the models, and the computed Fleiss’ kappa values in the Expert Image
Dataset. An inspection of the table’s data shows that the hypothesis made holds true: the
lack of agreement between the experts on condition 9 (Kappa of 0.045) was connected to
the poor performance of all groups (model, students, and experts) on the same condition
(MCC of 0 (zero)), indicating that the models struggled to learn from inconsistent labels.
Table 5.5 also indicates substantial agreement among the labelers for conditions 1 and 6
(Kappas of 0.776 and 0.750), which are the conditions where the models attained their
best results. These results suggest a correlation between the models’ performance and
the level of agreement among the labelers.
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Fig. 5.6 (a) is a scatter plot of the attained MCC results against the computed
kappas. The value of R2 reached 0.521. Similar to the correlation between the Frequency
of Positive Samples and MCC of Fig. 5.4, this correlation was not expected to be flawless.
Instead, it was aimed to demonstrate a trend—specifically, an increasing one—where a
higher kappa corresponds to a higher MCC of the proposed solution.

The correlation between the independent variables (kappa values and positive sample
frequency) and the dependent variable (attained MCC) was further investigated. Fig.
5.6 illustrates the final result. With these two independent variables, R2 reaches 0.769, a
value considered a good fit.

In summary, the performed statistical agreement analysis supports the hypothesis that
higher inter-rater agreement leads to better model performance, as measured by MCC.
The number of positive samples also has an increasing impact on the values of MCC
results. The results underscore the importance of achieving consensus among labelers
to improve the reliability of ground-truth data and, consequently, the performance of
predictive models.

5.4 CLOSURE

This chapter outlines the procedures for conducting the dental classification experi-
ments and their evaluation. The process consisted of neural network pretraining, label
extraction, selection of thirteen conditions, neural network training, comparison with
dental professionals, and a final assessment by expert consensus. The extensive exper-
iments and evaluations allowed us to draw several conclusions. A key finding was that
our system reached the proficiency level of a junior practitioner, leading us to conclude
that our framework was successful.
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(a) Scatter plot of MCC results for each condition against Fleiss’ Kappa, showing an increasing
trend.

(b) Scatter plot of the MCC results for each condition against Fleiss’ Kappa and the frequency
of positive samples in the dataset. (The blue dots represent the actual values, and the red dots
represent the predicted values according to the fitted linear function.)

Figure 5.6: Plots showing the linear trends of MCC results based on Fleiss’ Kappa and
the frequency of positive samples for each condition.





Chapter

6
CONCLUSION

6.1 STRENGHS AND CONCLUDING REMARKS

Computer vision studies, including those on panoramic radiographs, have relied pri-
marily on supervised learning, but this approach is becoming impractical due to its heavy
dependence on labeled data. The time required for data annotation can exceed 80% of
the project’s duration, hindering its scalability. This limitation underscores the need to
explore other learning paradigms, such as semi-supervised and self-supervised learning.

In this work, we used semi-supervised learning to construct a large labeled data set
of dental panoramic radiographs: the OdontoAI Open Panoramic Radiographs (O2PR).
The O2PR comprises 4000 images, in which the teeth were segmented and numbered, and
is four times larger than the previously most extensive data set on the matter available in
the literature (PANETTA et al., 2021). The magnitude of the O2PR data set was reached
by using the Human-In-The-Loop (HITL) concept to speed up the labeling process. Our
results indicated about 51% of labeling time reduction, even instructing our annotators
to attend to tiny segmentation errors. We estimate having saved at least 390 continuous
working hours. In practice, this number is even higher, as manual labeling is more
human-demanding. The HITL annotation verification process is less burdensome, as
confirming the labels through visual inspection (rather than correcting them through
mouse clicks and the point drag-and-drop feature) corresponds to a significant fraction
of the verification process.

The performance of the trained networks on distinct data (validation data, HITL
data, and, most important, on a separated manually labeled test dataset) were consistent,
showing an increasing trend in the considered metrics over the HITL iterations. HTC 4’s
segmentation mAP was +5.4 percentage points higher than the HTC 1’s on the test data
set. For comparison, the performance gain from the standard Mask R-CNN choice to
the HTC, the winner architecture of our benchmark (Section 4.2.2), was +4.4 in terms of
segmentation mAP. The work by Pinheiro et al. (2021) boosted the segmentation mAP
of the Mask R-CNN architecture in +2 percentage points by replacing the original FCN
segmentation head for a PointRend module. These results reinforces a common, though
frequently ignored, knowledge in the deep learning field: it is often better to gather data
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than expending much time in refining a model. For the purpose of enlarging the labeled
data sets, the HITL concept is very beneficial.

The less refined segmentation, mainly over the tooth crowns, was the major bottleneck
for faster labeling. The segmentation of deep learning solutions slightly differs from
the human annotators, overall on the object’s fine-detailed borders. If the application
allows neglecting these errors, the labeling speed up can increase substantially. Therefore,
we conclude that the HITL benefits for instance segmentation applications might vary
significantly according to the application due to today’s state of deep learning. Currently,
the HITL use is more beneficial to applications that do not demand greater segmentation
accuracy than those that demand. In this work, we did not neglect the tiny segmentation
errors, as we want our data set to be general-purpose.

The use of HITL reduces the human burden on the labeling data process. However,
it does not completely shift the learning paradigm from supervised learning as it requires
human intervation and, in the end, all the available data will be used for training the
machine learning models. This approach differs entirely from self-supervised learning,
as all the data employed can be unlabeled, which was fundamental to our investigations
into the classification of dental conditions. Our investigations into dental classification
began with the construction of a dataset, including the preprocessing of textual reports.
In the second stage, we created tooth crops using human annotations and pseudolabels
generated by instance segmentation neural networks. However, we lacked condition labels
for more than 50% of the teeth, as they did not have corresponding reports. Without
employing Masked Autoencoders (MAE), a self-supervised technique, these data would
have been wasted, underscoring the importance of adopting different paradigms.

We developed a robust framework leveraging the aforementioned paradigms and val-
idated it across 13 dental conditions through a comprehensive experimental analysis to
assess the performance of different setups. The Matthews Correlation Coefficient (MCC)
was used as the evaluation metric, measuring whether the model’s performance surpassed
random guessing—an outcome achieved for all conditions. The experiments were con-
ducted with crops of varying context, demonstrating that context significantly impacts
the final result.

The noun phrase extraction through GPT-4 Large Language Model proved to be
an effective strategy by not only expediting the labeling process but also identifying the
primary classes with minimal human intervention. Our strategy was thoroughly analyzed
and rigorously tested. The proposed solution’s lower performance in certain conditions
led to an investigation of the impact of inter-rater reliability. It was discovered that 52.1%
of model performance, as measured by MCC, correlated linearly with Fleiss’ kappa. This
relationship highlights the critical role of expert consensus, as higher kappa values were
associated with higher MCC values. Furthermore, the combination of kappa with the
frequency of positive examples results in R2 = 0.769, suggesting that more extensive and
consistently labeled datasets could significantly boost performance.

In conclusion, this work covered all the stages of a machine learning project: problem
definition, data collection, exploratory data analysis, data labeling, dataset construction
(including techniques to accelerate this step), data preprocessing, model selection, neural
network pre-training, model training, hyperparameter tuning, ablation studies, evaluation
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with metrics, and analysis with human comparison. The findings emphasize the need for
comprehensive datasets and consistent annotations to improve model accuracy. Moreover,
exploring alternative learning paradigms can help overcome the limitations of supervised
learning, paving the way for more robust and reliable dental diagnostics.

6.2 SHORTCOMINGS

We can point out some limitations of our work. For instance, despite its relative scale,
the dataset remains limited for rare conditions, which affected model performance on
underrepresented categories. The importance of datasets in machine learning cannot be
overstated, particularly in medical imaging, where classes are often highly imbalanced.
Although the current study used the largest dataset in the literature, of the selected
conditions had only 181 samples out of over 200,000 images, representing just 0.11% of
the total cropped tooth images. This highlights the need for even larger datasets to
improve generalizability.

A notable limitation of this study is the reliance on radiographic data obtained from
a single machine model. While this ensured consistency in image quality and parameters,
it may have introduced a bias, limiting the generalizability of the findings to radiographs
produced by other equipment or configurations. Dental radiographs can vary significantly
across different machines due to variations in resolution, exposure settings, and sensor
technologies, which might affect the performance of machine learning models. As a result,
the developed models could face challenges when applied to radiographs from diverse
sources, potentially requiring further fine-tuning or retraining to adapt to new imaging
environments.

Another limitation of this study is that the textual report from the training data was
labeled by only two radiologists, and the labeling process relied on a heuristic approach.
While the radiologists provided expert insights, the limited number of annotators may
introduce bias in the labels, possibly reducing the model’s classification performance and
generalizability. Furthermore, the use of heuristics to guide label extraction, though
practical, may not fully capture certain dental conditions, which could further impact
the model’s ability to perform accurately in diverse clinical scenarios.

The challenge of evenly sampling the dataset from the broader population is another
limitation. To address this, we utilized data collected directly from a dental clinic, allow-
ing us to replicate patient distribution patterns and closely mirror the local population.
However, focusing on a local population excludes ethnicities from regions farther away,
possibly limiting the generalizability of the findings. Therefore, we must acknowledge
that our results are biased toward the ethnicities represented in the patient population
from which the data were collected.

6.3 APPLICATIONS

The contributions of this study offer several practical applications in both research and
clinical settings. The O2PR dataset, with its large-scale annotated radiographs, serves as
a valuable resource for advancing computer vision applications in dental imaging. Given
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the importance of teeth in radiographic analysis, researchers can leverage this dataset
to benchmark new algorithms for tasks such as tooth segmentation, numbering, and
condition classification, thereby promoting further exploration into the automation of
dental diagnostics. Additionally, the use of HITL demonstrates the feasibility of creating
new instance segmentation datasets efficiently, paving the way for larger and more diverse
datasets. This methodology can be extended to other medical imaging fields, where
instance segmentation plays a crucial role but manual annotation remains time-consuming
and labor-intensive.

In clinical practice, the models developed in this study provide the foundation for
automated tools capable of assisting radiologists in diagnosing dental conditions from
panoramic radiographs. The use of semi-supervised learning, combined with self-supervised
paradigms, allows these models to adapt more effectively to limited or incomplete data,
addressing a common challenge in medical imaging. Moreover, the strategy of integrating
GPT-4 for automatic label extraction offers a new avenue for enhancing labeling efficiency
in medical datasets. This approach can be applied to other domains involving large-scale
text and image data, facilitating the development of robust machine learning systems
with minimal human intervention.

Finally, the framework and methodologies developed in this research can be extended
to other areas within the healthcare sector, fostering innovation in automated diagnostics.
This paves the way for future applications of AI in dentistry, offering the potential for
earlier detection of conditions, streamlined workflows, and improved patient outcomes.

6.4 FUTURE WORK

We believe that our work opens numerous avenues for future research. One promising
direction is the expansion of the instance segmentation dataset, both in size and scope,
by including additional objects of interest such as implants, prostheses, and jaw struc-
tures. Increasing the diversity of annotated objects, as well as incorporating patients
from different ethnicities, will enable the development of more comprehensive models
and better reflect real-world clinical scenarios. Additionally, the inclusion of new public
datasets of dental panoramic radiographs from various devices, even if limited in size,
would be invaluable for evaluating the generalization ability of these techniques across
diverse imaging conditions.

Future research should also focus on refining segmentation and tooth numbering tech-
niques by considering global anatomical context and geometric relationships between den-
tal structures. Aditionally, the results showed that crops containing more context yielded
better outcomes, even though these sizes were chosen empirically. Future research should
aim to systematically determine crop sizes and increase the number of positive samples
to enhance performance.

Finally, it is worth noting that this work utilized a version of GPT-4 with a simple
prompt. Future research should focus on refining prompts tailored for different large
language models (LLMs). Additionally, developing advanced prompts capable of directly
extracting dental conditions without relying on heuristics would be highly beneficial,
enhancing both efficiency and accuracy in diagnostic tasks.



BIBLIOGRAPHY

AMASYA, H. et al. Development and validation of an artificial intelligence software for
periodontal bone loss in panoramic imaging. International Journal of Imaging Systems
and Technology, Wiley Online Library, v. 34, n. 1, p. e22973, 2024.

BONFANTI-GRIS, M. et al. Evaluation of an artificial intelligence web-based software to
detect and classify dental structures and treatments in panoramic radiographs. Journal
of Dentistry, Elsevier, v. 126, p. 104301, 2022.

BROOKS, J. COCO Annotator. 2019. <https://github.com/jsbroks/coco-annotator/>.

CAI, Z.; VASCONCELOS, N. Cascade r-cnn: Delving into high quality object detection.
In: Proceedings of the IEEE conference on computer vision and pattern recognition. [S.l.:
s.n.], 2018. p. 6154–6162.

CAI, Z.; VASCONCELOS, N. Cascade r-cnn: High quality object detection and instance
segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE,
2019.

CHANG, H.-J. et al. Deep learning hybrid method to automatically diagnose periodon-
tal bone loss and stage periodontitis. Scientific reports, Nature Publishing Group UK
London, v. 10, n. 1, p. 7531, 2020.

CHEN, H. et al. Dental disease detection on periapical radiographs based on deep con-
volutional neural networks. International Journal of Computer Assisted Radiology and
Surgery, Springer, v. 16, p. 649–661, 2021.

CHEN, K. et al. Hybrid task cascade for instance segmentation. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. [S.l.: s.n.], 2019.
p. 4974–4983.

CHEN, K. et al. MMDetection: Open mmlab detection toolbox and benchmark. arXiv
preprint arXiv:1906.07155, 2019.

CHEN, L.-C. et al. Rethinking atrous convolution for semantic image segmentation. arXiv
preprint arXiv:1706.05587, 2017.

CHEN, Q. et al. Mslpnet: multi-scale location perception network for dental panoramic
x-ray image segmentation. Neural Computing and Applications, Springer, p. 1–15, 2021.

79



80 BIBLIOGRAPHY

CHUNG, M. et al. Individual tooth detection and identification from dental panoramic
x-ray images via point-wise localization and distance regularization. arXiv preprint
arXiv:2004.05543, 2020.

CHUNG, M. et al. Individual tooth detection and identification from dental panoramic
x-ray images via point-wise localization and distance regularization. Artificial Intelligence
in Medicine, Elsevier, v. 111, p. 101996, 2021.

CORDTS, M. et al. The cityscapes dataset for semantic urban scene understanding. In:
Proceedings of the IEEE conference on computer vision and pattern recognition. [S.l.:
s.n.], 2016. p. 3213–3223.

CUI, W. et al. Toothpix: Pixel-level tooth segmentation in panoramic x-ray images based
on generative adversarial networks. In: IEEE. 2021 IEEE 18th International Symposium
on Biomedical Imaging (ISBI). [S.l.], 2021. p. 1346–1350.

DAI, J. et al. Deformable convolutional networks. In: Proceedings of the IEEE interna-
tional conference on computer vision. [S.l.: s.n.], 2017. p. 764–773.

DOUGLAS, D. H.; PEUCKER, T. K. Algorithms for the reduction of the number of
points required to represent a digitized line or its caricature. Cartographica: the inter-
national journal for geographic information and geovisualization, University of Toronto
Press, v. 10, n. 2, p. 112–122, 1973.

EKERT, T. et al. Deep learning for the radiographic detection of apical lesions. Journal
of endodontics, Elsevier, v. 45, n. 7, p. 917–922, 2019.

FLEISS, J. L. Measuring nominal scale agreement among many raters. Psychological
bulletin, American Psychological Association, v. 76, n. 5, p. 378, 1971.

FUKUDA, M. et al. Evaluation of an artificial intelligence system for detecting vertical
root fracture on panoramic radiography. Oral Radiology, Springer, v. 36, p. 337–343, 2020.

GAO, L. et al. Ai-aided diagnosis of oral x-ray images of periapical films based on deep
learning. Displays, Elsevier, v. 82, p. 102649, 2024.

HE, K. et al. Masked autoencoders are scalable vision learners. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. [S.l.: s.n.], 2022. p.
16000–16009.

HE, K. et al. Mask r-cnn. In: Proceedings of the IEEE international conference on com-
puter vision. [S.l.: s.n.], 2017. p. 2961–2969.

HE, K. et al. Deep residual learning for image recognition. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. [S.l.: s.n.], 2016. p. 770–778.

HSU, T.-M.; WANG, Y.-C. Deepopg: Improving orthopantomogram finding summariza-
tion with weak supervision. arXiv preprint arXiv:2103.08290, 2021.



BIBLIOGRAPHY 81

JADER, G. et al. Deep instance segmentation of teeth in panoramic x-ray images. In:
IEEE. Conference on Graphics, Patterns and Images. [S.l.], 2018. p. 400–407.

JING, B.; XIE, P.; XING, E. On the automatic generation of medical imaging reports.
arXiv preprint arXiv:1711.08195, 2017.

KHAN, H. A. et al. Automated feature detection in dental periapical radiographs by using
deep learning. Oral surgery, oral medicine, oral pathology and oral radiology, Elsevier,
v. 131, n. 6, p. 711–720, 2021.

KHAN, S. et al. Transformers in vision: A survey. ACM computing surveys (CSUR),
ACM New York, NY, v. 54, n. 10s, p. 1–41, 2022.

KIRILLOV, A. et al. Pointrend: Image segmentation as rendering. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. [S.l.: s.n.], 2020. p.
9799–9808.

KOCH, T. et al. Accurate segmentation of dental panoramic radiographs with u-nets. In:
IEEE. International Symposium on Biomedical Imaging. [S.l.], 2019. p. 15–19.

KROIS, J.; SCHNEIDER, L.; SCHWENDICKE, F. Impact of image context on deep
learning for classification of teeth on radiographs. Journal of clinical medicine, Multidis-
ciplinary Digital Publishing Institute, v. 10, n. 8, p. 1635, 2021.

KWON, O. et al. Automatic diagnosis for cysts and tumors of both jaws on panoramic
radiographs using a deep convolution neural network. Dentomaxillofacial Radiology, The
British Institute of Radiology., v. 49, n. 8, p. 20200185, 2020.

LANGLAIS, R. P.; MILLER, C. Exercises in Oral Radiology and Interpretation-E-Book:
Exercises in Oral Radiology and Interpretation-E-Book. [S.l.]: Elsevier Health Sciences,
2016.

LECUN, Y.; BENGIO, Y.; HINTON, G. Deep learning. nature, Nature Publishing Group,
v. 521, n. 7553, p. 436–444, 2015.

LEE, J.-H.; KIM, D.-H.; JEONG, S.-N. Diagnosis of cystic lesions using panoramic and
cone beam computed tomographic images based on deep learning neural network. Oral
diseases, Wiley Online Library, v. 26, n. 1, p. 152–158, 2020.

LEITE, A. F. et al. Artificial intelligence-driven novel tool for tooth detection and seg-
mentation on panoramic radiographs. Clinical oral investigations, Springer, v. 25, n. 4,
p. 2257–2267, 2021.

LIN, T.-Y. et al. Feature pyramid networks for object detection. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. [S.l.: s.n.], 2017. p. 2117–
2125.

LIU, F. et al. Recognition of digital dental x-ray images using a convolutional neural
network. Journal of Digital Imaging, Springer, v. 36, n. 1, p. 73–79, 2023.



82 BIBLIOGRAPHY

LIU, S. et al. Path aggregation network for instance segmentation. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. [S.l.: s.n.], 2018. p.
8759–8768.

LONG, J.; SHELHAMER, E.; DARRELL, T. Fully convolutional networks for semantic
segmentation. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. [S.l.: s.n.], 2015. p. 3431–3440.

MATTHEWS, B. W. Comparison of the predicted and observed secondary structure of
t4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure, Elsevier,
v. 405, n. 2, p. 442–451, 1975.

MENZE, M.; GEIGER, A. Object scene flow for autonomous vehicles. In: Conference on
Computer Vision and Pattern Recognition (CVPR). [S.l.: s.n.], 2015. p. 3061–3070.

OLIVEIRA, H. N.; FERREIRA, E.; SANTOS, J. A. D. Truly generalizable radiograph
segmentation with conditional domain adaptation. IEEE Access, IEEE, v. 8, p. 84037–
84062, 2020.

PANETTA, K. et al. Tufts dental database: A multimodal panoramic x-ray dataset for
benchmarking diagnostic systems. IEEE Journal of Biomedical and Health Informatics,
IEEE, 2021.

PINHEIRO, L. et al. Numbering permanent and deciduous teeth via deep instance seg-
mentation in panoramic x-rays. In: SPIE. Symposium on Medical Information Processing
and Analysis (SIPAIM). [S.l.], 2021. p. 95 – 104.

QIAO, S.; CHEN, L.-C.; YUILLE, A. Detectors: Detecting objects with recursive feature
pyramid and switchable atrous convolution. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. [S.l.: s.n.], 2021. p. 10213–10224.

RANJBAR, F. R.; ZAMANIFAR, A. Autonomous dental treatment planning on
panoramic x-ray using deep learning based object detection algorithm. Multimedia Tools
and Applications, Springer, p. 1–35, 2023.

REN, S. et al. Faster r-cnn: Towards real-time object detection with region proposal
networks. In: Advances in neural information processing systems. [S.l.: s.n.], 2015. p.
91–99.

RONNEBERGER, O.; FISCHER, P.; BROX, T. U-net: Convolutional networks for
biomedical image segmentation. In: SPRINGER. International Conference on Medical
image computing and computer-assisted intervention. [S.l.], 2015. p. 234–241.

SCHWENDICKE, F. a.; SAMEK, W.; KROIS, J. Artificial intelligence in dentistry:
chances and challenges. Journal of dental research, SAGE Publications Sage CA: Los
Angeles, CA, v. 99, n. 7, p. 769–774, 2020.



BIBLIOGRAPHY 83

SILVA, B. et al. Dental image analysis: Where deep learning meets dentistry. In: Convo-
lutional Neural Networks for Medical Image Processing Applications. [S.l.]: CRC Press,
2022. p. 170–195.

SILVA, B. et al. A study on tooth segmentation and numbering using end-to-end deep
neural networks. In: IEEE. 2020 33rd SIBGRAPI Conference on Graphics, Patterns and
Images (SIBGRAPI). [S.l.], 2020. p. 164–171.

SILVA, B. P. M. et al. Boosting research on dental panoramic radiographs: a challenging
data set, baselines, and a task central online platform for benchmark. Computer Methods
in Biomechanics and Biomedical Engineering: Imaging & Visualization, Taylor & Francis,
p. 1–21, 2023.

SILVA, G.; OLIVEIRA, L.; PITHON, M. Automatic segmenting teeth in x-ray images:
Trends, a novel data set, benchmarking and future perspectives. Expert Systems with
Applications, v. 107, p. 15–31, 2018.

SIMONYAN, K.; ZISSERMAN, A. Very deep convolutional networks for large-scale im-
age recognition. arXiv preprint arXiv:1409.1556, 2014.

TAO, A.; BARKER, J.; SARATHY, S. DetectNet: Deep Neural Network for Ob-
ject Detection in DIGITS. 2016. Disponível em: <https://developer.nvidia.com/blog/
detectnet-deep-neural-network-object-detection-digits/>.

TASSOKER, M.; ÖZIÇ, M. Ü.; YUCE, F. Performance evaluation of a deep learning
model for automatic detection and localization of idiopathic osteosclerosis on dental
panoramic radiographs. Scientific Reports, Nature Publishing Group UK London, v. 14,
n. 1, p. 4437, 2024.

TONETTI, M. S. et al. Impact of the global burden of periodontal diseases on health,
nutrition and wellbeing of mankind: A call for global action. Journal of clinical periodon-
tology, Wiley Online Library, v. 44, n. 5, p. 456–462, 2017.

TUZOFF, D. et al. Tooth detection and numbering in panoramic radiographs using con-
volutional neural networks. Dentomaxillofacial Radiology, v. 48, n. 4, 2019.

VINAYAHALINGAM, S. et al. Automated chart filing on panoramic radiographs using
deep learning. Journal of Dentistry, Elsevier, v. 115, p. 103864, 2021.

WANG, A. et al. Glue: A multi-task benchmark and analysis platform for natural lan-
guage understanding. arXiv preprint arXiv:1804.07461, 2018.

WHITE, S. C.; PHAROAH, M. J. Oral radiology-E-Book: Principles and interpretation.
[S.l.]: Elsevier Health Sciences, 2014.

WHO, W. H. O. Global oral health status report. 2022. Disponível em: <https://www.
who.int/team/noncommunicable-diseases/global-status-report-on-oral-health-2022>.



84 BIBLIOGRAPHY

Wikipedia contributors. Panoramic radiograph — Wikipedia, The Free Encyclopedia.
2024. [Online; accessed 11-October-2024]. Disponível em: <https://en.wikipedia.org/w/
index.php?title=Panoramic\_radiograph&oldid=1249523277>.

WU, X. et al. A survey of human-in-the-loop for machine learning. arXiv preprint
arXiv:2108.00941, 2021.

XIE, S. et al. Aggregated residual transformations for deep neural networks. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition. [S.l.: s.n.], 2017.
p. 1492–1500.

YÜKSEL, A. E. et al. Dental enumeration and multiple treatment detection on panoramic
x-rays using deep learning. Scientific reports, Nature Publishing Group UK London, v. 11,
n. 1, p. 12342, 2021.

ZHANG, H. et al. Resnest: Split-attention networks. arXiv preprint arXiv:2004.08955,
2020.

ZHAO, Y. et al. Tsasnet: Tooth segmentation on dental panoramic x-ray images by
two-stage attention segmentation network. Knowledge-Based Systems, Elsevier, v. 206, p.
106338, 2020.


