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RESUMO

Horas de videos sao enviados para plataformassteeaming a cada minuto, com sistemas

de recomendacéo sugerindo videos populares e relevantes que pode ajudar aos usuarios a
economizar tempo no processo de busca. Sumarizadores de video foram entdo desenvolvi-
dos para detectar as partes mais relevantes e automaticamente condensa-las em um video
curto. Atualmente, avaliar esse tipo de método é desa ador uma vez que as métricas nao
avaliam a subjetividade dos usuarios, como a concisdo das anotacdes. Para lidar com o
critério de concisdo, n6s propomos uma nova métrica que avalie sumarizadores de video
em multiplas taxas de compressdo. Nossa métrica, chamadampression Level of USer
Annotation (CLUSA), mensura o desempenho dos sumarizadores de video diretamente

a partir dos escores de relevancia preditos. Para isso, a CLUSA gera sumarios de video
descartando gradualmente segmentos de video de acordo com os escores de relevancia an-
otados pelos usuarios. Depois de agrupar os sumarios de video pelas taxas de compressao,
a CLUSA os compara com os escores de relevancia preditos. Para preservar informacoes
relevantes em resumos de video concisos, CLUSA entdo pondera o desempenho dos suma-
rizadores de video em cada faixa de compresséo e, por m, calcula uma pontuacéo geral
de desempenho. Considerando que a CLUSA pondera todas as faixas de compresséao,
mesmo aquelas que ndo foram abrangidas pelas anotacfes dos usuarios, o desempenho de
base muda com cada conjunto de dados. Consequentemente, a interpretacdo do escore
de desempenho para os sumarizadores de video ndo é tao direta quanto em outras metri-
cas. Em nossos experimentos, comparamos a CLUSA com outras métricas de avaliacao
para sumarizacdo de video. Nossas descobertas sugerem que todas as métricas analisadas
avaliam adequadamente sumarizadores de video usando anotagdes binarias. Para as ano-
tacdes multivaloradas, a CLUSA mostrou-se mais adequada, preservando as informacdes
de video mais relevantes no processo de avaliacéo.

Palavras-chave: = Sumarizagéo de video. Sumarizadores de video. Avaliagdo. Métrica.
Taxa de compressao.
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ABSTRACT

Hours of video are uploaded to streaming platforms every minute, with recommender
systems suggesting popular and relevant videos that can help users save time in the
searching process. Video summarizers have been developed to detect the video's most
relevant parts, automatically condensing them into a shorter video. Currently, evaluat-
ing this type of method is challenging since the metrics do not assess user annotations'
subjective criteria, such as conciseness. To address the conciseness criterion, we propose
a novel metric to evaluate video summarizers at multiple compression rates. Our metric,
called Compression Level of USer Annotation (CLUSA), assesses the video summarizers'
performance by matching the predicted relevance scores directly. To do so, CLUSA gen-
erates video summaries by gradually discarding video segments from the relevance scores
annotated by users. After grouping the generated video summaries by the compression
rates, CLUSA matches them to the predicted relevance scores. To preserve relevant infor-
mation in concise video summaries, CLUSA weighs the video summarizers' performance
in each compression range to compute an overall performance score. As CLUSA weighs
all compression ranges even that user annotations do not span some compression rates,
the baseline changes with each video summarization data set. Hence, the interpretation
of the video summarizers' performance score is not as straightforward as other metrics.
In our experiments, we compared CLUSA with other evaluation metrics for video sum-
marization. Our ndings suggest that all analyzed metrics evaluate video summarizers
appropriately using binary annotations. For multi-valued ones, CLUSA proved to be
more suitable, preserving the most relevant video information in the evaluation process.

Keywords:  Video summarization. Video summarizers. Evaluation. Metric. Compres-
sion rate
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INTRODUCTION
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1.1 Motivation . . . . . . . . e 3
1.2 Goals. . . . . . e 3
1.3 Keycontributions . . . ... ... 4
1.4 Chaptermap . . .. . . . . . e 4

Billions of video hours are watched every day on streaming platforms such as Youtube,
and the total of available videos on those platforms continuously grows (Youtube, 2018).
As watching each video takes a long time, users need to select the videos they watch
rigorously. Selecting the most relevant videos is an arduous task for users; thus, stream-
ing platforms automate the search for relevant videos according to users' preferences.
However, just searching and recommendirgntire videos is no longer enough and users
demand forvideo summaries with the most important video information, as illustrated
in Fig. 1.1. Determining which video information is relevant to users is challenging as it is
a ected by users' subjective factors (HUTZ; BANDEIRA; TRENTINI, 2015; PASQUALI,
2017). Consequentlyyideo summarizers must not only mimic the way humans under-
stand and judge the relevance of information in videos but also tailor the video summary
to users' interests (TRUONG; VENKATESH, 2007).

Earlier studies in the video summarization have focused on identifying how humans
judge video information's relevance. He et al. (1999) suggested that users instinctively
follow four di erent but complementary criteria for judging the relevance of video in-
formation: Conciseness, coverage, context, and coherence. Conciseness is how much
users have shortened the entire video.€., the video compression), while coverage is the
amount of video information users have summarized indeed. Context and coherence are
intrinsically related to video segments' ordering and how video summaries told the story.
While users follow all of these criteria to summarize an input video, video summarization
studies focus only on coverage and conciseness criteria, as current video summarizers do
not address the ordering or generation of video information.

1



2 INTRODUCTION

Figure 1.1 Instead of users watching the entire video, users watch a video summary with the
most important video information selected by a video summarizer.

Since there were no relevance scores annotated by users for training or testing video
summarizers, earlier studies addressed the task of summarizing videos by using ad-hoc
summarization heuristics. Each study speci ed visual elements and events that are sup-
posed to be of interest to users (CHANG; HAN; GONG, 2002; XIONG; Regunathan
Radhakrishnan; Ajay Divakaran, 2003; Chong-Wah Ngo; Yu-Fei Ma; Hong-Jiang Zhang,
2003; ZHAO; XING, 2014; SUN; FARHADI; SEITZ, 2014; WU et al., 2016; YAO; MEI;
RUI, 2016). For instance, Chang, Han e Gong (2002) formulate a summarization heuristic
for baseball game videos based on the detection of the key events: Home run, catch, hit,
and in eld play. Heuristic-based video summarizers are accurate when users search for
known events; otherwise, it is unfeasible to formulate a unique summarization heuristic
that ultimately matches human judgments. Therefore, heuristic-based video summarizers
can no longer be evaluated in a generic video domain, and some studies merely described
video summarizers' results, pointing out advantages and disadvantages (Xiao-Dong Yu
et al., 2004).

To properly evaluate video summarizers in a generic video domain, video summa-
rization studies targeted the evaluation at users (SUNDARAM; CHANG, 2001; LIU;
ZHANG; QI, 2003; AGNIHOTRI; DIMITROVA; KENDER, 2004; TASKIRAN, 2006;
GYGLI et al., 2014; CHU; Yale Song; JAIMES, 2015; SONG et al., 2015), who are gen-
uinely able to determine which video information is relevant or not via user annotations.
For this reason, video summarization studies (GYGLI et al., 2014; SONG et al., 2015)
have askedusers to annotate the relevance of eaclideo segment , as illustrated in Fig.

1.2.

As there is no consensus on collecting user annotation, di erent guidelines emerge and
change how studies devise new video summarizers. Currently, these summarize videos by
discarding or preserving video segments (ZHANG et al., 2016; FAJTL et al., 2019; ZHOU;
QIAO; XIANG, 2017; ROCHAN; YE; WANG, 2018; OTANI et al., 2017). In other words,
video summarizers act as binary classi ers whose label O (zero) represents the discarded
video segments and label 1 (one), the preserved ones. Conversely, users nd it challenging
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Figure 1.2 Users judge the relevance of video segments, viz., consecutive video frames grouped
and that describe the same video information.

to discriminate some video segments' relevance from the least relevant to the most relevant
using a binary scale. Considering that, Song et al. (2015) collected user annotations
using an assessment scale with ve relevance scores, making it possible to generate video
summaries at multiple compression rates. In that case, video summaries generated from
user annotations and video summarizers must have similar compression rates for the
evaluation to be accurate using thd= . Therefore, video summarization studies opt to
evaluate video summarizers at a single compression rate (ZHANG et al., 2016; FAJTL
et al., 2019; ZHOU; QIAO; XIANG, 2017; ROCHAN; YE; WANG, 2018; OTANI et al.,
2017). In doing so, video summarization studies discard conciseness information of user
annotations.

1.1 MOTIVATION

Evaluating video summarizers has always proved to be an obstacle (TRUONG; VENKA-
TESH, 2007), and it is changing the way on how to address issues on video summarization
studies (GYGLI et al., 2014; OTANI et al., 2019; SHARGHI; LAUREL; GONG, 2017).

For example, a recent advance was in changing the assessment scale used to collect an-
notations from users. While multi-valued assessment scales have made it possible to
assess the conciseness criterion properfy, (the evaluation metric commonly used for
evaluating video summarizers) can not deal with video summaries at multiple video com-
pression rates. AsF does not distinguish video summaries' compression rate, video
summarizers' performance reduces when high-compressed video summaries are matched
to low-compressed ones. Accordingly, video summarization studies opt to limit the con-
ciseness criterion, and the evaluation of video summarizers remains stuck in a single preset
compression rate. Here, we emphasize that addressing the conciseness criterion on video
summarizers' evaluation is crucial to advance the video summarization.

1.2 GOALS

Video summarization studies collect multi-valued user annotations using di erent users
and collecting guidelines. Therefore, we can not directly compare user annotations to
investigate the assessment scales' impacts in the user annotations' quality
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We seek to accomplish this byollecting user annotations in a standard scenario
with the same videos and users

Assuming that multi-valued assessment scales are suitable for collecting user anno-
tations and F may not assess video summarizers' performance at multiple compression
rates, we also seek to devise rovel evaluation metric  to handle multi-valued user
annotations and multiple compression rates properly.

1.3 KEY CONTRIBUTIONS

Since Gyqgli et al. (2014) collected user annotations constraining their compression rdte,
can evaluate video summarizers using the SumMe annotations, in contrast to the multi-
valued annotations in TVSum50 data set (SONG et al., 2015). As our study demonstrated
that multi-valued assessment scales deliver higher annotations' quality than binary scales,
we devised Compression Level of USer Annotation (CLUSA) metric to overcome the
limitations of the F when applied in multi-valued scale annotations. This study already
has been published in Elsevier Expert Systems with Applications journal.

While we published the key contributions mentioned above (ABDALLA; MENEZES;
OLIVEIRA, 2019), Otani et al. (2019) introduced ranked correlation coe cients (RCC)
to assess multi-valued user annotations directly. To investigate the di erences between
RCC and CLUSA, we ranked ve state-of-the-art video summarizers using both metrics
in the SumMe and TVSum50 data sets. Although RCC, as a metric for evaluating video
summarizers, is arguably more appropriate thak , RCC do not perform weighing, and
hence, RCC do not target high-compressed video summaries. Conversely, the weighing
of compression ranges is crucial when CLUSA assesses video summarizers' performance,
and hence, missing compression ranges can skew CLUSA scores. As long we evaluated
video summarizers with the same compression ranges and user annotations, our study
showed that missing compression ranges do not impinge on video summarizers' ranking,
but the results' interpretation is challenging using CLUSA. At this moment, we are
submitting a paper with this aforementioned study. To sum up, we highlight three key
contributions presented in this study: (i) A metric to evaluate video summarizers against
user annotations, these latter collected with binary or multi-valued scales, (ii) a study
on the quality of user annotations collected from di erent assessment scales, and (iii) to
provide a better understanding of the limitations of RCC and CLUSA while identifying
what factors can skew their measurements.

1.4 CHAPTER MAP

Chapter 2 presents a background in the elds of video summarization and psychomet-

ric. We detail the task of summarizing videos, the requirements that video summarizers

must meet, and a history of how video summarization studies evaluated their proposals.

Considering the evaluation of video summarizers targeted at users, we investigated how
the collecting process dealt with users' subjectivity and how evaluation metrics assess
video summarizers' performance by matching user annotations to video summaries.
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Chapter 3 presents how CLUSA intends to overcome the limitations of evaluation
metrics commonly used for video summarization. We detail the mathematical formu-
lation of CLUSA and the factors that skew CLUSA. Also, we discuss how missing
compression ranges impinge on video summarizers' performance.

Chapter 4 presents the methodology and results of our experimental study. In short,
we analyzed: (i) The assessment scales' impact on the user annotations' quality, (ii) the
evaluation metrics by exploring the relationship between internal consistency and hu-
man consistency, and (iii) how missing compression ranges a ect the video summarizers'
ranking in the SumMe and TVSum50 data sets.

Chapter 5 presents our discussions about our study's impact on video summariza-
tion and how future studies can improve our evaluation approach.
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Contents

2.1 Pipeline of avideo summarizer. . . . . .. ... .. .. ... .. ..., 8
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2.8 Current issues on the evaluation of video summarizers . . . . . ... . .. 18
29 Closure. . . . . . . . . . 21

Although the generation of video summaries must meet three requirements: (i) The
presence of visual elements and events relevant to users, (ii) elimination of redundant
information, and (iii) generation of useful information as possible from input videos
(TRUONG; VENKATESH, 2007), only these are not su ciently discriminative to rank all
video summarization studies. Therefore Truong e Venkatesh (2007) also have grouped the
studies on video summarization according to their application goals. They ar8rows-
ing and retrieval systems to assist users on video searching (AWAD et al., 2017;
ARMAN et al., 1994; ZHANG et al., 1997; Haojin Yang; MEINEL, 2014),computa-
tional reduction and content analysis systems to abstract video information and
eliminate redundancies (PLUMMER; BROWN; LAZEBNIK, 2017), story navigation
and video editing  to help users on video navigation (NGUYEN; NIU; LIU, 2012), and
highlighting systems to short input videos by selecting relevant video segments or frames
(YAO; MEI; RUI, 2016; GYGLI et al., 2014; XIONG; Regunathan Radhakrishnan; Ajay
Divakaran, 2003). It is noteworthy that current studies (FAJTL et al., 2019; MAHAS-
SENI; LAM; TODOROVIC, 2017; ZHOU; QIAO; XIANG, 2017) referred to highlighting
systems as video summarization methods€., video summarizers). Henceforth, we refer
to highlighting systems as video summarizers.

7



8 BACKGROUND

Figure 2.1 In a generic video summarization pipeline, a video shot segmentation split the input
video into video segments. After estimating the relevance of each video segment, a knapsack
solver selects most relevant segments to generate a video summary.

2.1 PIPELINE OF A VIDEO SUMMARIZER

In general, avideo summarizer follows a general pipeline (see Fig. 2.1, according to
three steps: (a) Aninput video is segmented intovideo segments by grouping con-
secutive video frames, (b) a relevance score is predicted for each video segment, and (c)
the most relevant segments are selected for the video summary bkrapsack solver .

A video summarizer estimates a non-binary relevance score for each video segment. To
comply with video compression constraints when evaluating video summarizers, a knap-
sack solver generates video summary from tipeedicted relevance scores , as depicted

in Fig. 2.1. Since video summarizers commonly carry out thedeo shot segmentation

by using the same technique used on the collecting process, we cover this topic in more
detail in Section 2.4 when discussing the collecting guidelines in the currently available
data sets.

After segmenting a video shot, the video summarizer estimates each video segment's
relevance. Chu, Yale Song e Jaimes (2015) accomplish this by modeling the summariza-
tion as bipartite graphs. The video segments, which are represented by graph nodes, are
connected according to the visual similarity. Finally, the video summarizer selects the
video segments by ordering the weights of the graph edges. Mahasseni, Lam e Todorovic
(2017) use Long Short-Term Memory (LSTM) layers to select some video segments to
reconstruct the input video by means of a Generative Adversarial Networks (GAN), with
the video summary being a set of video segments whose reconstructed video was similar
to the input one. Zhang et al. (2016) use bidirectional LSTM layers and an Multilayer
Perceptron (MLP) to compute the probability of each video frame belongs to the nal
video summary, and a Determinantal Point Processes (DPP) to eliminate redundant video
frames. The summarization model is trained with previously collected user annotations.
Fajtl et al. (2019) applied attention mechanisms in LSTM layers to select visual elements
that are supposed to be relevant in the video. In a similar way, Zhou, Qiao e Xiang
(2017) also encode temporal dependencies but using Recurrent Neural Network (RNN)
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Figure 2.2 In some content domains, video summarizers can focus on detecting key events that
are previously de ned. In these cases, the evaluation of video summarizers becomes similar to
the evaluation of event detection task.

layers instead.

2.2 A BRIEF HISTORY OF THE EVALUATION OF VIDEO SUMMARIZERS

Currently, video summarization studies evaluate video summarizers using annotated rel-
evance scores. However earlier studies did not take into account users' annotation to
measure the video summarizers' performance (LIU; ZHANG; QI, 2003; WANG; CHEN;
ZHU, 2011; TRUONG; VENKATESH, 2007). So the evaluation of video summarizers
was limited to descriptive analysis (TRUONG; VENKATESH, 2007). The resulting sum-
maries were obtained from the authors' perspective in speci ¢ situations, and certainly
with biased conclusions. Since there were no experimental arguments to support the
descriptive analysis of the advantages and weaknesses of video summarizers, the results
were considered inadequate (Xiao-Dong Yu et al.,, 2004; CO-INVESTIGATOR, 2013;
TASKIRAN, 2006; GYGLI et al., 2014; SHARGHI; LAUREL; GONG, 2017).

A solution found to overcome the limitations of descriptive analysis was to change the
evaluation of video summarizers according to each content domain (TRUONG; VENKA-
TESH, 2007), e.g, sports, news, and documentaries. For example, in a soccer match,
speci ¢ events, such as goals, fouls, and penalties, attract users' attention more than
others. In other words, video summarization aims to detect events set by users, and the
event detection nails the video summarizers' performance (YAO; MEI; RUI, 2016; Chong-
Wah Ngo; Yu-Fei Ma; Hong-Jiang Zhang, 2003; ZHAO; XING, 2014; SUN; FARHADI;
SEITZ, 2014; CHANG; HAN; GONG, 2002). As depicted in Fig. 2.2, theerformance
score is computed bymatching the events predicted by avideo summarizer to events
annotated by users. As users cannot judge video information from a few preset events
for the generic domain's videos, there is no guarantee that any heuristics used to summa-
rize videos will properly match human judgments (TRUONG; VENKATESH, 2007). As
such, video summarization studies have looked for other evaluation approaches to assess
video summaries from user annotations (Yong Jae Lee; GHOSH; GRAUMAN, 2012; LIU
et al., 2015; GYGLI et al., 2014; SONG et al., 2015; CHU; Yale Song; JAIMES, 2015;
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Figure 2.3 A video shot segmentation split the input video into video segments. Users then
annotate the video segments' relevance using an assessment scale.

KIM; SIGAL; XING, 2014; SUNDARAM; CHANG, 2001; AGNIHOTRI; DIMITROVA,;
KENDER, 2004).

Assuming that only users are truly able to determine which video segments are relevant
in videos, two evaluation approaches emerged as user studies: (a) Requesting users to
assess the quality of video summaries (LIU; ZHANG; QI, 2003; TASKIRAN, 2006; CHU,;
Yale Song; JAIMES, 2015), and (b) requesting users to annotate the relevance of video
segments (GYGLI et al., 2014; SONG et al., 2015). Since (a) does not guarantee the
same conditions when evaluating video summarizers, (b) is currently the most common
type of evaluation procedure in the state-of-the-art, nowadays. To clarify this evaluation
approach, theannotated relevance scores (in Fig 2.3) are used to generataisers'
video summaries with which all video summarizers are evaluated in the same way.
Although the evaluation based on relevance scores annotated by users is currently the
most straightforward way to assess video summarizers' performance, the collecting process
has led to some challenges. Since annotations can be skewed as the users' perception
of relevance changes constantly, video summarization studies often apply psychological
testing to mitigate bias and improve the quality of the user annotations.

2.3 COLLECTING VIDEO INFORMATION USERS FIND RELEVANT

Psychological testing is part of a complex process aimed at diagnosing individuals' perfor-
mance on speci c tasks. These tests aim to evaluate, measure, or estimate a latent factor
in user behavior (URBINA, 2014; HUTZ; BANDEIRA; TRENTINI, 2015; PASQUALI,
2017). In video summarization, psychological tests attempt to measure the users' per-
ception of relevance, which is the intendethtent factor . Since user's perception is a
psychological phenomenon |, the relevance of arideo segment can not be measured
directly. Instead, it is measured from user feedback viannotation , as illustrated in
Fig. 2.4.
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Figure 2.4 After watching a video segment, user assesses the relevance of the video segment.
However, user's perception is a psychological phenomenon that can only be measured indirectly
through user feedback, in this case, annotations.

In psychometric studies, there are two di erent epistemological approaches to measure
the users' perceptions: Classical Test Theory (CTT), that focuses exclusively on the
evaluation of the user annotations and their measurement error, and ltem Response
Theory (IRT), that focuses on each test item and its in uence on the measurement of the
latent factor (HUTZ; BANDEIRA; TRENTINI, 2015; PASQUALLI, 2017). To the best of
our knowledge, there are no video summarization studies, which apply IRT, while Gygli
et al. (2014) and Song et al. (2015) applied CTT in the collecting process of the SumMe
and TVSum50 data sets, respectively. Given that, our study focuses on CTT theory.

In CTT, video summarization studies (GYGLI et al., 2014; SONG et al., 2015) model
the users' perception as

t=D E; (2.1)

wheret is the true relevance of video segmentst is supposed to be the latent factor

if it is measured directly. Unfortunately, it is unlikely to control all environmental and
psychological conditions when users annotate video segments' relevance. As a result, the
measured value is di erent fromt, which leadst to be decomposed into two variables:
The D annotated relevance scores and & random error.

2.4 HOW CURRENT VIDEO SUMMARIZATION STUDIES COPE WITH RAN-
DOM ERROR

Pasquali (2017) and Kline (2013) listed several situations and factors that bodst shift-

ing D away fromt. Among this list, Gygli et al. (2014) and Song et al. (2015) coped
with: How much time users spend on completing the collecting process and how much
users can distinguish the relevance of video segments on levels.

The time spent by users taking videos is not only determined by the number of
videos, but also how many segments they are split into. Before users start annotating the
relevance of each video segment, a video shot segmentation split the input videos (YUAN
et al.,, 2007; PAL et al., 2015; HANJALIC, 2002), as illustrated in Fig. 2.3. Gygli et
al. (2014) accomplished this by grouping video frames into ve-second video segments,
stretching them out according to the visual features of consecutive video frames. In turn,
Song et al. (2015) split the input videos into two-second video segments. As the length of
video segments a ects the total of items in the psychological test, there is a limit on how
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many video segments each user can consistently annotate before getting tired (KLINE,
2013). To the best of our knowledge, the studies with the biggest amount of annotated
video segments were carried out by Song et al. (2015), who collected annotations for 6,291
video segments from 50 videos, and Gygli et al. (2014), who collected 820 video segments
from 25 videos.

In the annotation process, users judge video segments by selecting the relevance scores
that best match users' perception within an assessment scale (SONG et al., 2015). Among
the four types of assessment scales, Hutz, Bandeira e Trentini (2015) argue only two are
suitable for psychometric studies:Ordinal scales , for situations in which it is only
possible to discriminate order, andnterval scales , for when users are also able to dis-
criminate magnitude. Hutz, Bandeira e Trentini (2015) also argue that if we could observe
a latent factor directly, there would be an interval scale with in nite values. For that
to occur in video summarization, users are required to discriminate a unigue relevance
score for each video segment, although users are unable to do this (BORSBOOM, 2005).
Therefore, each video summarization study presets how many and which relevance scores
users can pick on an assessment scale. Gygli et al. (2014), Chu, Yale Song e Jaimes
(2015) and Song et al. (2015) used assessment scales with two, three and ve relevance
scores, respectively. However, choosing the number of relevance scores for the assessment
scale is not a trivial decision. As the study carried out by Simms et al. (2019) shows,
users tend to disagree when there are not enough relevance scores to discriminate a latent
factor appropriately. Users are also unable to make ne-grained distinctions when there
are many scores to decide. In short, the assessment scale depends on users' ability to
distinguish the relevance of video segments.

To encourage users to be more discerning about which video segments are relevant,
Gygli et al. (2014) and Song et al. (2015) impose constraints on the distribution of
relevance scores. Gygli et al. (2014) preset a limit of 15% of the length of video that
users can annotate as relevant. Similarly, Song et al. (2015) preset a distribution of
relevance scores on a ve-point assessment scale. Gygli et al. (2014) and Song et al.
(2015) argue this tight control over how users annotate the relevance of video segments
IS necessary to generate high-quality video summaries from user annotations.

2.5 ENSURING THE QUALITY OF USER ANNOTATIONS

Collecting guidelines aim to improve user annotations' quality by coping with biasing
factors. Urbina (2014), Pasquali (2017), and Hutz, Bandeira e Trentini (2015) point two
quality indicators often used in psychometric studies: Test validity to verify whether
the psychological test and its items measure the psychological phenomenon they intend
to measure (in particular, the relevance of video segments), and test reliability to
investigate the internal consistency of scores annotated by users (being specic, how
much users agree with the relevance of video segments). To the best of our knowledge,
video summarization studies (GYGLI et al., 2014; SONG et al., 2015) only investigate
test reliability.

To explain the basis of test reliability, let us take the relevance perception modeling
in Eq. 2.1, assuming thatt is constant over time for a single user an& is estimated
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Table 2.1 Reference values to evaluate Cronbach's alpha estimations.

Cronbach's alpha Internal consistency
0:9 Excellent
0:8 < 09 Good
0:7 < 08 Acceptable
0:6 < 07 Questionable
0:5 < 06 Poor
< 05 Unacceptable

by periodically testing users (PASQUALI, 2017; URBINA, 2014). The smaller the dif-
ference between measurements, the less susceptible is the collecting guidelines to factors
that boost E. Therefore, users must repeatedly annotate each video segment's relevance
several times. Repeating annotation is not feasible in video summarization, as users are
often rewarded in cash on Amazon Mechanical Turk (SONG et al., 2015) to perform
this. Hence Gygli et al. (2014) and Song et al. (2015) collected user annotations from a
cross-sectional perspective in a single test, calculating the internal consistency between
users.

Anastasi (2000) points out three ways to measure the internal consistency of user an-
notations collected from a single psychological tes8plit-half method that measures
the consistency for a sample of user annotationKuder-Richardson coe cient for
user annotations collected with binary ordinal scales, an@ronbach's alpha  for user
annotations collected with generic ordinal scales. Cronbach (1951) derived Cronbach's
alpha equation from Kuder-Richardson, and thus, both coe cients are directly compara-
ble on the same scale. Currently, Cronbach's alpha is the most used internal consistency
estimator, being applied to user annotations collected by Gygli et al. (2014) and Song et
al. (2015).

Formally, Cronbach's alpha coe cient, , measures the internal consistency df
video segments according to

P K 2 !

— i=1 Dby
where the variance of thej -th video segment, %j, is divided by the user annotation
variance, 3. Cronbach's alpha is a direct measure of user disagreement, so the greater
the variance of users' responses, the lower the value of Cronbach's alpha. Cronbach's
alpha values range from0 (when user annotations totally dier from each other) and
1 (when user annotation values are all equal). Since these values are constant for any
user annotations, the reference values showed in Table 2.1 are used in the literature to
assess the reliability of psychometric tests (GEORGE; MALLERY, 2010; HUTZ; BAN-
DEIRA; TRENTINI, 2015). As a rule, user annotations must reach at least the internal
consistency value of 0.7.

In the studies conducted by Gygli et al. (2014) and Song et al. (2015), the average
gualities calculated by Cronbach's alpha for all videos were 0.74 and 0.81, respectively.
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Figure 2.5 The state-of-the-art approach to evaluating video summarizers is to apply knap-
sack solver to user annotations to geanerate a video summary that matches automatic video
summaries.

However, not all user annotations collected by Gygli et al. (2014) had an acceptable
quality. Notably, Gygli et al. (2014) found that 9 out of the 20 videos annotated in the
SumMe data set had an unacceptable quality score. For example, the quality of user
annotations for the video titled "Saving dolphins” was 0.21. Song et al. (2015) did not
report the quality values for each video, as was done by Gygli et al. (2014); hence, it is
not possible to assert whether users disagreed on any speci c video. Overall, the average
guality of the TVSum50's annotations is above 0.8, and therefore, "good" according to
Table 2.1.

2.6 EVALUATING VIDEO SUMMARIZERS FROM USER ANNOTATIONS

While video summarizers attempt to match the relevance scores collected with multi-
valued ordinal scales€.g., Likert scales), video summarization is binary. Therefore, the
annotated relevance scores (in the balloon (i) in Fig. 2.5) are mapped to binary
with a similar compression rate of the video summary generated by summarizers (in the
balloon (ii)). An evaluation metric then measures the similarity of the predicted video
summary compared to the annotated one (in the balloon (iii)), with theF -; being the
most common in current video summarization studies (GYGLI et al., 2014; SONG et al.,
2015). Derived from the confusion matrixF metric is a convenient way to fully describe
the performance of a predictive model by matchingxpected values topredicted ones
(MOSLEY, 2013).

For a binary predictive model, Table 2.2 summarizes the value matching in four cat-
egories: true positive (TP) , true negative (TN) , false positive (FP) , and false
negative (FN) , which correspond to the total of hits and misses for each class label.
From these four categories' values, some rates.q., accuracy, precision, recall, and fall-
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Annotated
Positive | Negative
: Positive TP FP
Predicted Negative FN TN

Table 2.2 Confusion matrix organizes the matching of expected and predicted values in a
classi cation model in a structured way, allowing detailed analysis of hits and misses.

out) emerged to assess the classi er's performance aiming at speci ¢ statistical analysis.

Gygli et al. (2014) propose to evaluate video summarizers using metrics based on
precision and recall rates, arguing that the evaluation should aim at the selected video
segments (e relevant video segments). While precision describes the hits of relevant
video segments concerning all video segmemisedicted to be relevant as

™
TP+ FP’

recall describes the hits of relevant video segments in relation to all video segments
annotated as

precision= (2.3

TP

recall= ————:
TP + FN

(2.4)

Precision and recall rates measure the most relevant video segments from complemen-
tary perspectives. Thus, video summarization studies pursue a trade-o between both
rates via harmonic mean known a$ score (KELLEHER; NAMEE; D'ARCY, 2015),
given by

precision recall

F =1+ 2 — ;
( ) = precision + recall

(2.5)

with =1 being the weight parameter used in current studies.

The presentedF assesses the classiers' binary outputs as categorical targets, be-
ing necessary to calculate the arithmetic mean df values for each class label when
classi ers' outputs are non-binary.

2.6.1 Other way to assess classi cation performance

Evaluation metrics, such as Receiver Operating Characteristic (ROC) and Precision-
Recall (PR) curves, assess the classiers' prediction scores (KELLEHER; NAMEE;
D'ARCY, 2015). Consequently, performance analysis is not limited to an ad-hoc bina-
rization of the relevance scores. Instead, ROC and PR curves threshold the relevance
scores with multiple values, generatin@; confusion matrices for each video summary.

In short, the dierence between PR and ROC curves is the rates calculated from
C; confusion matrices. PR curve is computed as (precisiomrecall) pairs, which are
summarized in a single performance score by calculating the area under curve (AUC) as
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X1 precision + precision,,

AUC-PR =
2

(recall;; recall): (2.6)

i=1

Conversely, the ROC curve is computed from (recgllfall-out;) pairs, with the fall-out
rate being calculated as

FP
fall- = ———— 2.7
Al-out = Ep TN (2.7
Likewise PR curve, (recall, fall-out;) pairs of ROC are summarized by
X * vecall + recal
auc-roc = - recal *recall oy ot fallout;) (2.8)

. 2
i=1
It is worth mentioning that video summarization studies did not evaluate video sum-
marizers using ROC and PR curves to the best of our knowledge.

2.7 RETHINKING THE EVALUATION OF VIDEO SUMMARIZERS

Current studies model video summarizers as classi cation tasks, but Otani et al. (2019)
proposed to evaluate them di erently. Assuming that the annotated and predicted rele-
vance scores are equivalent in terms of the order of relevance scores (non-linear monotonic
relationship), Otani et al. (2019) assess how high this relationship is by using ranked cor-
relation coe cients (RCC). Otani et al. (2019) applied two RCC (Kendall (KENDALL,
1945) and Spearman (SPEARMAN, 1904)) to matclannotated relevance scores (in
the balloon (i) of Fig. 2.6) to the relevance scores predicted by video summarizers (in
the balloon (ii) of Fig. 2.6).

Formally, the Kendall coe cient calculates the total agreement and disagreement
pairs for ranked scores from predicted and annotated relevance scores. Admittedly,
we found three versions of the Kendall coe cient in the literate (KENDALL, 1938;
KENDALL, 1945; STUART, 1953), the g being the version used by Otani et al. (2019),
and described as

kc kd

B= P ; (2.9)
(ko ki)(ko ko)
Ko = I)(((k 1)=2; (2.10
k]_ = t (t, 1)=2 ; (211)
X
k, = u (v 1)=2; (2.12

i

wherek,, Kg, tj and u; are the total of concordant and discordant pairs, and the ties in
the rst and second group, respectively. Similarly, Spearman coe cientrs, matchesX
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Figure 2.6 The simpli ed model of evaluation approach using RCC. The relevance scores that
come out of the (i) collecting of user annotations and (ii) generic video summarizers are ranked
in order of importance and then compared. The internal stages in (i) and (ii) were omitted.

ranked scores generated from video summarizers' prediction é annotated relevance
scores, according to

rs = Py = M : (213)
fx TI'm
whererg is the usual Pearson correlation (PEARSON, 1904).

After the computation of both RCC, p-values (.e., statistical signi cance) indicate
whether the RCC values were not found by chance. Hence, if the probability is lower
than 0.05 (5%), the association between variables is not incidental and can be deemed as
statistically signi cant. Lower p-values such as 0.01 and 0.001 show an even higher level
of signi cance.

As a rule, the Kendall and Spearman values lie in the rande 1;+1] for any data
association. Values below zero (a negative correlation) represents an inverse relationship;
that is, the high relevance scores misestimated by the video summarizers match to the
low scores annotated by users, and vice-versa. This situation is illustrated in Fig. 2.7(a).
The predicted relevance is high for the green video segment (the rst bar in the plots),
but low for users annotation. This oppositional relationship also occurs in other video
segments in the plots (such as the yellow one), rendering a negative correlation value.
So, the more dissimilar the ranked scores, the closer to -1. In contrast, the more similar
the ranked scores, the more positive the correlation coe cient is, peaking at +1. When
there are no signi cant associations between relevance scores, the correlation coe cient

is null, and hence, 0 (zero). To sum up, video summarizers should pursue positive RCC
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() (b)

Figure 2.7 Relevance scores whose correlation is negative show inverted values in relation to
the y axis =0:5, whereas the same does not occur when the correlation is null.

Figure 2.8 For each video segment, represented by di erent colors, an integer number is ran-
domized (top face of the rolled dice) at a preset range. The set of random integer numbers
forms a randomly generated annotation.

values, with O (zero) being the expected value for the random classi cation method's
performance.

The performance score does not provide information on the quality of the automatic
video summaries. For this purpose, at least one video summarizer should be used as a
reference for performance, being the random classi cation method the most common one.
In e ect, this method generates relevance scores at random for each video segment such
as rolling a dice (SONG et al., 2015) (see Fig. 2.8). The top face of the dice simulating a
video summarizer that predicts relevance scores by chance. Hence, state-of-the-art video
summarizers should pursue a performance score greater than the one achieved by the
random classi cation method, with O (zero) being the random classi cation method's
performance in the RCC.

2.8 CURRENT ISSUES ON THE EVALUATION OF VIDEO SUMMARIZERS

F and RCC have limitations that make it di cult to assess the performance of video
summarizers accurately. The evaluation using addresses the video summarization task
as a binary classi cation of video segments from the input video. As video summarizers
typically predict non-binary relevance scores for each video segment, a knapsack solver
maps the relevance scores to a video summary at a preset compression rate. RCC can
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overcome this limitation by matching annotated and predicted relevance scores directly.
Hence, RCC do not aim to preserve the most relevant video segments as they are not
weighted. By carefully investigating howF and RCC assess the performance of video
summarizers, we identi ed three issues: (a) Thelegree of error , when F matches
the expected and predicted relevance scores directly; (b) tloerrelation of relevance
scores that are equivalent in rank order; and (c)weighing of the most compressed video
summaries. These issues are illustrated in Fig. 2.9, and further detailed.

Keeping in mind that user annotations are collected using ordinal scales with several
degrees of relevance. The intuitive solution would be to expand the binary classi cation
model to a non-binary model (multi-label classi cation) using assessment scales with
higher representativeness. This way, each relevance score annotated by users corresponds
to a speci c class of the multi-label model. For example, on a three-point Likert scale,
the relevance scores 3, 2, and 1 correspond to the "relevant”, "neutral”, and "irrelevant”
class labels, respectively. Assuming that, the matches the annotated and predicted
relevance scores directly on a multi-label classi cation. In practice, multi-label classi-
cation con icts with psychometric studies on the normative reference as there is no
guarantee that users will understand the relevance of information in the same way. Users
who are aware of the input video's content may judge video information as belonging to
the "irrelevant” class; in contrast, other users may judge this same video information as
belonging to the "relevant” class. This situation is illustrated in Fig. 2.9(a). Both video
summaries accurately predicted the annotated relevance scores, except in the highlighted
pink area. As evaluation metrics for classi cation ignores the distance between expected
and annotated values, all di erences are treated equally as an error; in other words, the
error of high-compressed video summaries is equal to low-compressed ones. The evalua-
tion by classi cation approach also ignores relevance scores' rank, as illustrated in Fig.
2.9(b). In the magenta bars, the annotated and predicted relevance scores are di erent.
However, both generate the same video summaries, as the relevance scores follow the
same relevance order. To sum up, the multi-label approach is not suitable for evaluating
video summarizers.

Estimating the distance and order of relevance scores is useful, as it increases the
discrimination of video summarizers' performance. RCC are more suited for comparing
relevance scores as RCC assess the correlation between two variables. However, RCC goes
against video summarization as RCC does not aim to preserve the video segments with
the highest relevance scores. In Fig. 2.9(c), one video summarizer predicted more high
relevance scores than the other. Hence, the video summaries generated from them have
di erent compression rates. The video summarizer that discriminates the relevant video
information more accurately should have the highest performance score. Nonetheless, the
performance scores of both video summarizers are equal using RCC. Indeed, there are
ways for RCC to weight each relevance score on the ordinal scale. However, even with
these approaches, video summaries are not weighted according to the compression rate.
Consider Fig. 2.10 that illustrates two users who have annotated six video segments.
Except for the magenta video segment, both users annotated the same values for each
video segment, as shown in Figs. 2.10(a) and 2.10(b). The user in Fig. 2.10(a) judged the
magenta video segment as highly relevant, choosing the relevance score '4'. On the other
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(a) Degree of errors: Equal evaluations with di erent degrees of error.

(b) Correlation of relevance scores: Di erent evaluations, but equally correlated.

(c) weighing of video summaries: Video summaries are evaluated equally although the compression
rates are di erent, as they hit di erent relevance levels.

Figure 2.9 Evaluation issues identi ed in current video summarization metrics.
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@)

(b)

Figure 2.10 The compression rates of videos summaries generated by the thresholding of two
user annotations.

hand, the user in Fig. 2.10(b) considered the same video segment as of little importance,

giving just a '1'. Since both users have the relevance score '4' as the highest order of

importance possible for a video segment, this particular relevance score guides the video
summary to di erent compression rates. For instance, selecting the video segments whose

relevance score is equal to or above '4' in Fig. 2.10(a), a video summarizer removes 50% of
the video segments. Conversely, the compression rate is 66% for the user in Fig. 2.10(b)
by selecting video segments with the same relevance score.

2.9 CLOSURE

Current studies evaluate video summarizers using , this being the most widely used.
More recently, the RCC were introduced with aim at coping with the limitations offF .
However, both metrics present issues when applied to video summarization. Next chapter,
we propose a novel metric to overcome these issues.
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To overcome the issues df and ranked correlation coe cients (RCC) in video sum-
marization, we conceived a novel metric named Compression Level of USer Annota-
tion (CLUSA) by assigning relevance scores to the order of importance. While current
studies (FAJTL et al., 2019; ZHOU; QIAO; XIANG, 2017; ROCHAN; YE; WANG, 2018;
OTANI et al., 2017; ZHANG et al., 2016) evaluate video summarizers by mapping multi-
valued relevance scores to video summaries at a single compression rate, CLUSA evaluate
the relevance scores predicted by video summarizers (see the balloon (ii) in Fig. 3.1) at
multiple compression rates. To do so, CLUSA generates all possible video summaries from
the annotated relevance scores (see the balloon (i) in Fig. 3.1) by gradually discard-
ing video segments according to their relevance (the thresholding process in the balloon
(i) of Fig. 3.1). For example, CLUSA extracted three video summaries with di erent
compression rates from annotated relevance scores in the balloon (i) by assigning value
1 to the selected video segments (the bars K) and value 0O, otherwise. After grouping
these video summaries, each video summary is matched to relevance scores predicted by
video summarizers in the balloon (iii). CLUSA then computes an overall performance
score by weighing the mean matching scores.

3.1 FORMAL DEFINITION OF CLUSA

Let m = (m;) 2 R¥ be a vector containing relevance scores predicted by a video sum-
marizer for K video segments. To properly evaluaten, CLUSA requires a data set

23
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Figure 3.1 The simpli ed model of CLUSA's evaluation approach. After mapping the rele-
vance scores that come out of (i) collecting user annotations, the video summaries are matched
with the output from the (ii) generic video summarization method, being later grouped and
weighed by compression range. The internal stages in (i) and (ii) were omitted.

D = (dy) 2 RY X annotated by U users. AsD values can be non-binary, they are
mapped to O; video summaries considering the unique relevance scores in each tow,
as

u=fdy :8;1 1 Ul j Kg: (3.2)
The top-down example in Fig. 3.2 illustrates this mapping process. Starting on a

single row-vector ofD matrix, CLUSA applies thresholds of 0.2 and 0.6 to generate two
concatenated video summarie€);. O; is given by

O =([Dy upl:l k juj) 12RYTK: (3.2
As the highest values inu; leads all values inO; to zero, CLUSA discards them and
concatenatesO; video summaries into a single matrixX = (x;;) 2 R (4 D K The
steps described above builds a set of video summaries (as shown in each row of Fig.
3.3(a)), X, from the user annotations,D (illustrated in each row of Fig. 3.3(b)).
Each row-vector,x; 2 X, denotes a binary form obtained from user annotation, so
CLUSA compute a matching score vectorz;, given by

. P
zi=( (m;x)):1 i juij) ; (3.3
where is a vanilla function, which matchesm with X; values, such as the area under
Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves (AUC-ROC
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