
Addressing Class Imbalance in Renal Amyloidosis
Classification: A Comparative Study of Few-Shot

Learning and Conventional Machine Learning
Techniques

Alexsandro Silva Santos1[0009−0005−8934−5009], Luciano Rebouças de
Oliveira2[0000−0001−7183−8853], Washington Luis Conrado dos

Santos3[0000−0002−5075−1254], and Angelo Amancio Duarte4[0000−0001−7446−1342]

1 Graduate Program in Computer Science, State University of Feira de Santana, Av.
Transnordestina, s/n, 44036-900. Feira de Santana, Brazil

alexsandro.ssantos75@gmail.com
2 Intelligent Vision Research Lab, Computer Science Department, Federal University

of Bahia, Rua Prof. Aristides Novis, 2, 40210-630. Salvador, Brazil
lrebouca@ufba.br

3 Structural and Molecular Pathology Lab, Gonçalo Moniz Institute, Fundação
Oswaldo Cruz, Rua Waldemar Falcão, 121, 40296-710. Salvador, Brazil

washington.santos@fiocruz.br
4 High-Performance Computing Lab, Department of Technology, State University of

Feira de Santana, Av. Transnordestina, s/n, 44036-900. Feira de Santana, Brazil
angeloduarte@uefs.br

Abstract. Class imbalance presents a significant challenge in Compu-
tational Pathology, particularly in classifying rare diseases such as renal
amyloidosis. This paper investigates the effectiveness of Few-Shot Learn-
ing (FSL), specifically through prototypical networks, alongside conven-
tional methods to enhance the automatic classification of renal glomeruli
from biopsy images. A novel multi-stain dataset is introduced, comprising
11,674 annotated images across nine glomerular lesion classes, including
amyloidosis, stained with four different dyes. The study compared base-
line CNN models with FSL approaches, both with and without Cost-
Sensitive Learning (CSL). The FSL-CSL-Ensemble achieved the highest
F1-Score of 93.8%, surpassing the performance of related studies that
addressed datasets with less severe imbalance ratios. This study under-
scores the potential of FSL in classifying renal amyloidosis, especially
when combined with CSL, and suggests the possibility of eliminating
the need for Congo red staining, the current gold standard for diagnosis.
The findings highlight the necessity of developing innovative approaches
like FSL to improve outcomes in medical image analysis, where data
scarcity is prevalent.

Keywords: Class Imbalance · Few-shot Learning · Computational Pathol-
ogy · Glomeruli classification.
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1 Introduction

Computational Pathology (CPATH) has emerged as a powerful tool in the diag-
nosis and classification of various diseases, particularly in the field of nephrology.
Among the myriad of renal pathologies, the ones caused by glomerular lesions
present a unique challenge due to the diverse morphological characteristics and
clinical implications. Accurate classification of glomerular lesions is crucial for
proper diagnosis, prognosis, and treatment planning. However, the complex-
ity and variability of glomerular lesions, coupled with the scarcity of certain
pathologies, that often yield imbalanced classes, pose significant challenges for
traditional machine learning approaches in CPATH.

Class imbalance is a pervasive issue in CPATH, particularly in the context
of disease classification. This imbalance occurs when one or more classes in a
dataset are significantly underrepresented compared to others. In the context
of glomerular lesions, this issue is especially pronounced due to factors inherent
to medical data and disease prevalence, such as the rarity of certain diseases or
conditions, difficulty and cost of data acquisition, ethical and privacy concerns,
variability in disease progression, and bias in data collection.

A prime example of this class imbalance challenge is evident in the classi-
fication of renal amyloidosis, a rare but severe condition affecting the kidneys.
Amyloidosis is characterized by the abnormal deposition of misfolded proteins,
called amyloid fibrils, in various organs, including the kidneys. In renal amyloi-
dosis, these deposits accumulate in the glomeruli, the kidney’s filtration units,
leading to progressive organ dysfunction and potentially fatal outcomes [15].

The classification of renal amyloidosis presents several unique challenges:
a) Rarity- Amyloidosis is a relatively uncommon condition, resulting in limited
available data for training machine learning models; b) Morphological Similarity-
Amyloid deposits can sometimes resemble other glomerular lesions, making dif-
ferentiation challenging even for experienced pathologists; c) Staining Variability-
The gold standard for amyloidosis diagnosis, Congo red staining [24], can be
inconsistent and requires specialized expertise to interpret correctly; and d)
Heterogeneity- Amyloidosis can present with various patterns and distributions
of amyloid deposits, further complicating classification efforts.

These challenges contribute significantly to the under-representation of amy-
loidosis in datasets with images of glomeruli. Consequently, in the context of com-
putational pathology, samples of renal amyloidosis are vastly outnumbered by
those of more common renal conditions or healthy tissue. This pronounced imbal-
ance poses a substantial challenge for traditional machine learning approaches,
which tend to be biased towards the majority class, potentially leading to missed
diagnoses of this critical condition.

Classical approaches to tackle class imbalance typically fall into three cat-
egories: data-level methods, algorithm-level methods, and hybrid methods [7].
Data-level techniques, such as oversampling and undersampling, aim to balance
the dataset by adjusting the number of samples in each class. Algorithm-level
methods, including cost-sensitive learning and ensemble techniques like bagging
and boosting, modify the learning process to compensate for class imbalance. Hy-
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brid methods combine both, data and algorithm-level approaches. While these
techniques have shown success in many applications, they often struggle with
extreme imbalances or when dealing with limited data availability, as is common
in rare diseases like renal amyloidosis.

Few-Shot Learning (FSL) approaches [5] have emerged as a promising solu-
tion to address data sparsity scenarios and mitigate the operational costs associ-
ated with dataset annotation, particularly in contexts where data is limited [23].
FSL is designed to learn effectively from a small number of labeled examples,
making it especially suitable for rare disease classification tasks in computational
pathology.

While initially developed to tackle data scarcity, FSL has increasingly found
application in addressing class imbalance problems [2]. This expansion of FSL’s
utility has given rise to a new research direction known as Class Imbalance Few-
Shot Learning (CIFSL) [13]. CIFSL leverages the inherent ability of FSL to
learn effectively from a small number of labeled examples, making it especially
suitable for rare disease classification tasks, offering the potential to overcome
the limitations of traditional class imbalance techniques, especially when dealing
with rare conditions in computational pathology. However, the application of
CIFSL to the specific challenge of glomerular lesion classification, particularly
renal amyloidosis, remains largely unexplored.

In this study, we present a comparative analysis between conventional tech-
niques and Few-Shot Learning (FSL) as strategies for addressing class imbal-
ance in glomerular disease diagnostics, with a specific focus on amyloidosis. Our
approach begins with the development of a baseline model using established
methods to combat class imbalance, namely resampling [21] and cost-sensitive
learning (CSL) [12], which serves as a benchmark for subsequent comparisons.
We then construct a series of FSL classifiers utilizing prototypical networks,
employing the same architectural foundations as our baseline models for the
embedding functions. To further enhance performance, we integrate standard
N-way-K-shot episodic training with CSL. Finally, we create an ensemble-based
model using the top-performing individual models. Throughout our analysis, we
employ the F1-Score as our primary metric for model comparison. This choice
is deliberate, as the F1-Score provides a balanced measure of precision and re-
call, avoiding the potential bias towards the majority class that can occur with
other metrics such as accuracy [11]. This comprehensive approach allowed us to
rigorously evaluate the efficacy of FSL in managing class imbalance within the
context of rare glomerular disease classification.

This study aimed to address critical gaps in computational pathology for
renal disease classification through several key objectives. We introduce a novel,
large-scale dataset of 11,674 annotated glomeruli images across nine lesion classes
and four staining techniques, addressing the scarcity of comprehensive, multi-
stain datasets in renal pathology (dataset available under request). Our research
compares the performance of conventional machine learning techniques with
Few-Shot Learning (FSL) approaches in classifying renal amyloidosis, focusing
particularly on addressing extreme class imbalance. We explore an innovative
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combination of FSL with Cost-Sensitive Learning to further improve classifica-
tion performance in the context of severe class imbalance. Of particular interest
is our investigation into the use of non-specific stains for amyloidosis classifi-
cation, which could potentially eliminate the need for specialized Congo red
staining in the diagnostic process. This aspect is especially significant as the
current method of diagnosing amyloidosis requires biopsy slides to be processed
using Congo red, a specific staining technique. Our proposed method aims to ac-
curately diagnose amyloidosis from glomeruli images stained with common dyes
like Periodic Acid-Schiff (PAS) and Hematoxylin and Eosin (H&E). Our results
showed that this approach could significantly simplify the diagnostic process,
leading to faster and more cost-effective diagnoses of this disease.

By addressing these objectives, our study seeks to advance the field of com-
putational pathology in renal disease classification, potentially improving diag-
nostic accuracy and efficiency in clinical practice. Furthermore, our findings may
serve as a basis for the development of methods for the classification of other rare
diseases characterized by significant class imbalance in medical imaging datasets.

2 Related Works

In addressing the class imbalance in medical imaging, researchers have employed
various innovative approaches. Mahbub et al. proposed an algorithmic method
using a novel cost function, Center-Focused Affinity Loss (CFAL), for histologi-
cal dataset imbalance. They achieved an F1-Score of up to 83% on a substantial
dataset of 277,524 samples with an imbalance ratio (IR) of approximately 1:3
[9]. Walsh and Tardy focused on mammography image classification, comparing
traditional imbalance techniques with generative adversarial networks (GAN).
Their proposed method, "Artifacting," achieved an AUCROC of 76.8% on a
highly imbalanced dataset (IR 1:19) containing 20.000 images [22]. Raj et al.
introduced a data augmentation technique called the "Crossover-based Tech-
nique," which generates new samples by combining existing images. Applied to
CNN training on three medical datasets, this method achieved an impressive
Macro F1-Score of 98% in a multi-class brain tumor detection task [14]. These
studies demonstrate the potential of diverse approaches in addressing class im-
balance across various medical imaging domains, from histopathology to mam-
mography and brain tumor detection, highlighting the ongoing challenge and the
need for innovative solutions in this field.

Few-shot learning (FSL) has gained attention not only for addressing data
scarcity but also for tackling class imbalance, sometimes referred to as Class
Imbalance Few-shot Learning (CIFSL). Deng and Li combined Transfer Learn-
ing (TL), FSL, resampling techniques, and image masking methods for white
blood cell classification and counting in blood samples with an imbalance ratio
of 1:6 [3], achieving an AUCROC of up to 88%. Medela et al. applied an FSL
approach with Siamese Neural Networks to transfer knowledge from a multiclass
colon dataset to healthy and cancerous tissues of the colon, breast, and lung [10].
Using only 60 samples per class in the support set, they achieved up to 90% Bal-
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anced Accuracy (BAC) on balanced datasets. Abbas proposed the Intelligence
Medical Imaging Recognition (IMR-FSL) model for image retrieval, testing it on
the TCIA (Clark et al., 2013) and KVASIR (Pogorelov et al., 2017) datasets [1].
Their model demonstrated impressive performance with 95% sensitivity, 96.5%
specificity, 0.96 AUC, and 97.5% accuracy. Titoriya and Singh utilized Proto-
typical Networks (PN) and Model Agnostic Meta-Learning (MAML) across four
datasets for cancer diagnosis, two of which were imbalanced [20]. Their study
reported accuracy up to 84.56% for a 2-way-2-shot configuration on the query
set.

These studies showcase the versatility of FSL in addressing both data scarcity
and class imbalance across various medical imaging applications, from blood cell
analysis to cancer diagnosis.

3 Methods

Our methodology aimed at comparing baseline classifier models trained on the
entire dataset of images against models trained solely on images stained with
the Periodic Acid-Schiff (PAS) dye. This comparison allowed us to assess the
impact of stain selection on model performance. Additionally, we investigated the
potential benefits of incorporating Cost-Sensitive Learning (CSL) to address the
inherent class imbalance within the dataset, evaluating whether this approach
can enhance the classifiers’ performance. Furthermore, we aimed to explore the
efficacy of Few-Shot Learning (FSL) techniques to determine if they can further
improve model accuracy when dealing with limited data, as is often the case in
medical imaging. Through these evaluations, our goal was to identify optimal
strategies for enhancing the automatic classification of renal amyloidosis.

Throughout our analysis, we employ the F1-Score as our primary metric for
model comparison. This choice is deliberate, as the F1-Score provides a balanced
measure of precision and recall, making it particularly suitable for evaluating
classifiers on imbalanced datasets [4].

In the context of our highly imbalanced dataset, where amyloidosis cases are
significantly outnumbered by other glomerular lesions, accuracy alone can be
misleading. A model that simply predicts the majority class for all instances
could achieve high accuracy without actually identifying any amyloidosis cases.
The F1-Score, being the harmonic mean of precision and recall, penalizes such
behavior and provides a more nuanced evaluation of model performance.

Moreover, in clinical applications like renal pathology, both false positives
and false negatives can have significant consequences. False positives may lead to
unnecessary treatments or anxiety for patients, while false negatives could result
in delayed or missed diagnoses. The F1-Score, by considering both precision and
recall, helps us balance these concerns and identify models that perform well in
both aspects.

Additionally, the F1-Score is particularly useful when dealing with rare con-
ditions like amyloidosis. It gives equal weight to precision and recall, ensuring
that models are evaluated not just on their ability to avoid false positives (preci-
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sion), but also on their capacity to identify true positive cases (recall) in a sparse
dataset.

By consistently using the F1-Score across our different experimental setups
- from baseline models to Few-Shot Learning approaches - we maintain a stan-
dardized basis for comparison. This allows us to effectively assess the relative
strengths of different methodologies in addressing the class imbalance challenge
in glomerular lesion classification.

3.1 Dataset

We developed a comprehensive dataset comprising 11,674 glomeruli images,
meticulously extracted from whole slide images (WSI) of renal biopsies. These
high-quality images were stored in JPEG format to balance detail preservation
and storage efficiency. Our dataset encompasses a wide spectrum of pathological
conditions, reflecting the complexity of renal pathology: normal glomeruli (with-
out lesions), amyloidosis lesions, pure sclerosis without crescent, hypercellularity-
type lesions, pure hypercellularity-type lesions without crescent, crescentic glomeru-
lonephritis, membranous nephropathy, sclerosis, and podocytopathy.

To ensure a robust representation of each condition, we employed four dis-
tinct histological staining techniques, each offering unique insights into glomeru-
lar structure and pathology: AZAN trichrome (AZAN), hematoxylin and eosin
(HE), periodic acid-methenamine silver (PAMS), and periodic acid-Schiff (PAS).

The images in the dataset exhibit dimensional variability, ranging from 607
× 751 pixels to 1024 × 768 pixels, reflecting the natural variation in glomerular
size and shape. All images maintain a consistent high resolution of 300 × 300
dpi, ensuring detailed visualization of glomerular structures.

Table 1 provides a detailed distribution of samples across pathological con-
ditions and staining techniques, offering a quantitative overview of the dataset’s
composition. Figure 1 presents representative images of glomeruli stained with
each technique, visually demonstrating the morphological diversity captured in
our dataset. This comprehensive approach to dataset construction ensures a
rich, varied foundation for training and evaluating our machine-learning models
in glomerular lesion classification.

3.2 Data Pre-processing

The amyloidosis lesion was designated as the positive class, with all other glomeru-
lar lesions grouped into a single negative class. This resulted in a highly imbal-
anced dataset with an imbalance ratio of approximately 1:30, reflecting the rarity
of amyloidosis in clinical settings.

For a complete model evaluation, we employed a 75:25 train-test split. The
75% training portion underwent K-fold cross-validation, so we could take a ro-
bust performance estimation by detecting variance in the model performance
across different samples. This approach facilitated fair comparisons between dif-
ferent models. We partitioned the source set into K = 5 folds, where (K− 1)/K
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Fig. 1. Samples of images in the dataset according to the class of lesion and type of
stain. Blank squares indicate no sample of a lesion in the stain. (0) Amyloidosis, (1)
Normal, (2) Pure Sclerosis, (3) Hypercellularity, (4) Pure Hypercellularity, (5) Crescent
Glomerulonephritis, (6) Membranous Nephropathy, (7) Sclerosis, (8) Podocytopathy

of the images were used for training and 1/K reserved for validation. The deci-
sion to use five folds instead of the more commonly recommended ten folds in
cross-validation literature was driven by the limited number of samples in some
classes, particularly the rare lesions such as amyloidosis. With five folds, we en-
sured a sufficient number of minority class samples in each fold for meaningful
evaluation, while still maintaining the benefits of cross-validation. This strat-
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Table 1. Original dataset distribution, by lesion and staining. (0) Amyloidosis, (1)
Normal, (2) Pure Sclerosis, (3) Hypercellularity, (4) Pure Hypercellularity, (5) Crescent
Glomerulonephritis, (6) Membranous Nephropathy, (7) Sclerosis, (8) Podocytopathy.

Class AZAN HE PAMS PAS Total
pos 0 31 145 96 102 374
neg 1 223 1,585 345 542 2,695

2 234 672 104 472 1,482
3 257 1.890 0 987 3,134
4 60 0 0 164 224
5 121 467 157 359 1,104
6 136 712 324 367 1,539
7 0 276 122 219 617
8 90 65 106 244 505

Total 1,152 5,812 1,254 3,456 11,674

egy struck a balance between robust performance estimation and the practical
constraints imposed by our dataset’s class imbalance, allowing for more reliable
model assessment in the context of rare disease classification.

Our study encompassed two distinct experimental paradigms: a comprehen-
sive multi-stain analysis utilizing the entire dataset of 11,674 images across all
four staining techniques, and a single-stain-focused analysis employing a subset
of 3,456 images exclusively stained with Periodic Acid-Schiff (PAS). Both ex-
perimental sets underwent identical preprocessing and partitioning procedures
to ensure consistency and comparability of the results. The selection of PAS
for our focused analysis was based on several key factors. Firstly, PAS uniquely
captured all types of lesions present in the original dataset. Secondly, PAS is
ubiquitous in nephropathology and general pathology practices worldwide. Its
pervasiveness is due to its ability to highlight important structural elements
such as basement membranes, glycogen, and neutral mucopolysaccharides, mak-
ing it an indispensable tool in the diagnosis of various renal pathologies. This
widespread use enhances the translational potential and clinical relevance of our
findings. Lastly, focusing on PAS offered the potential to streamline diagnostic
workflows. This experiment was designed to evaluate whether PAS-only mod-
els could accurately classify the full spectrum of glomerular lesions, compare
their performance to multi-stain models, and explore the potential for optimiz-
ing biopsy analysis. By assessing the efficacy of this single, commonly used stain
for comprehensive lesion classification, we aimed to investigate opportunities to
reduce procedural complexity, improve diagnostic efficiency, and enhance cost-
effectiveness in pathological examinations. This approach not only addresses
the technical aspects of machine learning in pathology but also considers the
practical implications for clinical workflow and resource allocation in diagnostic
nephropathology, potentially paving the way for more standardized and efficient
diagnostic processes.

To establish a robust comparison, we implemented multiple strategies to ad-
dress the inherent class imbalance in our dataset. Initially, we established a base-
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line training the models with a dataset using classical random oversampling to
achieve a balanced 1:1 ratio of positive (amyloidosis) to negative (other lesions)
samples across all folds, providing a standard benchmark in imbalanced learning
scenarios. Then, we took the unbalanced dataset and developed models incor-
porating cost-sensitive learning, assigning higher weights to the minority class
during training to mitigate bias towards the majority class without altering the
underlying data distribution. For the Few-Shot Learning (FSL) experiments uti-
lizing prototypical networks, we deliberately avoided resampling techniques. This
decision was based on the fundamental principle of prototypical networks, which
leverage the average of sample embeddings to calculate class prototypes. We
hypothesized that introducing duplicate samples through oversampling might
introduce noise and potentially degrade the quality of the learned prototypes,
leading to suboptimal model performance.

To ensure the validity and generalizability of our results, we conducted final
model validation on the initially reserved 25% test set, which crucially main-
tained the original dataset’s imbalanced proportions, reflecting real-world class
distributions and providing a more realistic assessment of model performance
in clinical scenarios. This comprehensive methodological approach enables a rig-
orous and statistically sound evaluation of each model’s predictive capabilities
across diverse data subsets, allows for a fair comparison between traditional ma-
chine learning approaches and FSL techniques in the context of extreme class
imbalance, mitigates potential biases, reduces the risk of overfitting, and provides
insights into the effectiveness of different strategies for handling class imbalance
in the specific context of glomerular lesion classification.

3.3 CNN models

We employed six pre-trained convolutional neural network (CNN) architectures:
EfficientNet-B0, EfficientNet-B4, Inception-v3, ResNet-18, ResNet-50, and VGG-
16. These architectures were chosen based on their proven performance in various
image classification tasks and their distinct architectural features.

EfficientNet models, developed by Tan and Le [19], are known for their ability
to balance network depth, width, and resolution. They achieve state-of-the-art
accuracy on ImageNet while being up to 10 times smaller and faster than previ-
ous models. The B0 and B4 variants were selected to compare the performance of
a smaller, more efficient model (B0) against a larger, potentially more powerful
one (B4) in the context of our glomerular lesion classification task.

Inception-v3, introduced by Szegedy et al. [18], is designed to be computa-
tionally efficient while maintaining high accuracy. Its use of factorized convolu-
tions and aggressive regularization makes it particularly suitable for tasks where
computational resources may be limited, as is often the case in medical image
analysis settings.

Residual Networks (ResNet), developed by He et al.[6], address the vanishing
gradient problem in deep networks through the use of skip connections. This
allows for the training of much deeper networks, potentially capturing more
complex features in the images. We included both ResNet-18 and ResNet-50 to
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evaluate whether the increased depth of ResNet-50 provides significant benefits
in our specific classification task.

Despite being an older architecture, VGG-16 [8] remains relevant due to its
simplicity and effectiveness. Its uniform architecture makes it easier to interpret
and modify, which can be advantageous when fine-tuning for specific medical
imaging tasks.

The models were trained using a learning rate of 0.001, batch size of 32,
and Stochastic Gradient Descent optimizer. Training proceeded for a maximum
of 100 epochs, with an early stopping mechanism implemented with patience
of 10 epochs to prevent overfitting. These diverse architectures were selected to
provide a comprehensive baseline for our study. By comparing their performance,
we aim to identify which architectural features are most beneficial for glomerular
lesion classification, particularly in the context of the class imbalance present in
our dataset. This comparison also allows us to assess whether more complex,
modern architectures offer significant advantages over simpler, more established
models in this specific medical imaging context. Furthermore, these pre-trained
models allow us to leverage transfer learning, potentially mitigating the impact
of our limited dataset size.

Furthermore, these pre-trained models allow us to leverage transfer learning,
potentially mitigating the impact of our limited dataset size. While these mod-
els were initially trained on natural images (ImageNet), previous studies have
shown that the low-level features learned by CNNs can be effectively transferred
to medical imaging tasks, providing a strong starting point for our fine-tuning
process.

3.4 Classical approach for class imbalance

To establish a comprehensive baseline for our study, we implemented two distinct
strategies to address the inherent class imbalance in our dataset. First, we trained
models using a dataset balanced through classical random oversampling. This
technique achieved a 1:1 ratio of positive (amyloidosis) to negative (other lesions)
samples across all folds, providing a standard benchmark in imbalanced learning
scenarios. Second, we developed models using the original unbalanced dataset,
incorporating cost-sensitive learning (CSL). This approach assigned weights to
the loss function inversely proportional to each class’s sample count, thereby pri-
oritizing the minority class during training. This method mitigates bias towards
the majority class without altering the underlying data distribution.

To rigorously assess the impact of CSL, we trained each architecture both
with and without its implementation. The models were subsequently ranked
in descending order based on their F1 scores across the 5-fold cross-validation,
with the F1 score chosen due to its balanced consideration of precision and recall,
crucial in imbalanced classification tasks.

Following this initial evaluation, we identified the three top-performing ar-
chitectures based on their aggregate scores. These selected models underwent
full training using the entire training set (75% of the original dataset), with
the remaining 25% reserved as a hold-out set for final validation. This approach
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maximized data diversity during training, enhancing the generalizability of our
classifiers.

To leverage the collective strengths of these top-performing models, we devel-
oped an ensemble-based classifier, referred to as Baseline-ensemble. This ensem-
ble method combines the predictions of individual models, potentially improving
overall accuracy and robustness.

This systematic approach to model selection, training, and ensemble con-
struction ensured a robust baseline for comparison with our Few-Shot Learning
models. It provides a comprehensive evaluation of different architectural and
training strategies in the context of glomerular lesion classification, particularly
for the rare condition of renal amyloidosis.

3.5 Few-Shot Learning for class imbalance

Few-Shot Learning (FSL) leverages prior knowledge gained from training on a
large, labeled dataset, to perform efficiently on small classification tasks within
a specific domain of interest. FSL employs a unique training paradigm known
as episodic training, which mimics the few-shot scenario during the learning
process. In the FSL framework, the core concept is the N -way-K -shot task.
Here, N represents the number of classes to be distinguished, while K denotes
the number of examples provided for each class. These examples form the support
set, a small, labeled dataset used for learning. The model’s performance is then
evaluated on a separate query set, which contains new, unseen examples from
the same classes. This approach allows the model to adapt quickly to new tasks
with minimal data [25].

Among FSL methodologies, metric-based approaches, particularly prototypi-
cal networks, have gained prominence. In these networks, the support set samples
are used to generate class prototypes. This is achieved through an embedding
function, typically a Convolutional Neural Network (CNN), denoted as fϕ, where
ϕ represents the network parameters [16]. The function fϕ transforms input sam-
ples into a feature space where similar samples cluster together. Class prototypes
are then computed as the mean of the embedded support samples for each class.

Classification of a new sample in prototypical networks involves comparing
its embedding to these class prototypes. This comparison is performed using a
distance function d, commonly either cosine similarity or Euclidean distance. The
new sample is assigned to the class whose prototype is nearest in the embedding
space, effectively leveraging the model’s ability to learn meaningful representa-
tions from limited data [17].

For training the FSL models we used a metric-based approach with prototyp-
ical networks. Each model was trained using the same folds used in the baseline
experiment, with each fold comprising a support set for prototype generation
and a query set for validation. We implemented episodic training following the
standard N-way-K-shot FSL paradigm, with N = 2 (binary classification) and
K = 30 for the training stage’s support set, and K = 15 for the validation
stage’s query set. The values for K were selected based on the number of sam-
ples in the minority class. Specifically, for each fold, the training set included 60
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samples, and the validation set contained 16 minority samples, which facilitated
testing on a final imbalanced set with 25 minority samples. The models were
trained over 100 epochs, with 200 episodes per epoch, and included an early
stopping mechanism that was triggered after 10 epochs without performance
improvement.

During each fold’s episodes, we stored the optimal parameter and prototype
states for each model. We hypothesized that cross-validation would enhance
prototype construction by leveraging the entire training set. Post-training, each
model was evaluated against the reserved 25% imbalanced test set using its best
fold-specific state.

We explored two distance functions for classification: Euclidean distance and
cosine similarity. Experimental results demonstrated a significant performance
advantage for cosine similarity.

Following a methodology analogous to the baseline classifier, we selected the
top three performing models based on the F1 score to construct two ensemble-
based models: FSL-Ensemble (without CSL) and FSL-CSL-Ensemble (with CSL
applied). This approach aimed to leverage the collective predictive power of
the most effective prototypical network models while mitigating class imbalance
challenges.

4 RESULTS AND DISCUSSION

Here we present the results of the experiments outlined in Section 3, which fo-
cused on comparing the effectiveness of conventional machine learning techniques
with Few-Shot Learning (FSL) for classifying amyloidosis in renal glomeruli. The
experiments investigated the performance of pre-trained convolutional neural
network (CNN) architectures as baseline models, both with and without cost-
sensitive learning (CSL), and compared these to FSL models using prototypical
networks. We explore the impact of stain selection on model performance, com-
paring models trained on the entire dataset (with all stains) to those trained
exclusively on Periodic Acid-Schiff (PAS) stained images. Additionally, we dis-
cuss the effectiveness of combining conventional approaches like CSL with FSL
techniques to enhance classification accuracy.

4.1 Results using classical approach

Figure 2 presents a comparative analysis of F1-scores achieved by various convo-
lutional neural network (CNN) architectures in the classification of renal amy-
loidosis, with a particular emphasis on the impact of stain selection. The results
demonstrate a consistent performance advantage for models trained on the com-
plete dataset, which incorporates all four staining techniques, over those trained
exclusively on Periodic Acid-Schiff (PAS) stained images. This performance dis-
parity suggests that the diverse visual information provided by multiple staining
methods contributes significantly to enhanced model accuracy.
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Within each stain selection group, certain architectures exhibit superior per-
formance. For the full dataset, VGG-16, ResNet-18, and EfficientNet-B0 achieve
the highest F1 scores. In contrast, when trained solely on PAS-stained images,
EfficientNet-B0, ResNet-50, and ResNet-18 emerge as the top performers. This
variation in architectural efficacy across staining subsets indicates that the opti-
mal choice of CNN architecture for amyloidosis classification may be contingent
on the specific staining technique employed in the training data. These findings
underscore the importance of considering both architectural design and staining
methodology in developing robust classification models for renal pathology.

Fig. 2. Comparison of F1-Scores between models trained on samples from all stains
(blue) and those trained solely on PAS-stained samples (red).

Based on the superior performance of models trained on samples from all
stains, we selected these models for further optimization using cost-sensitive
learning (CSL). Figure 3 illustrates the impact of the CSL application, which, as
hypothesized, resulted in significant performance enhancements across all archi-
tectures. Notably, the ensemble classifier, integrating VGG-16, ResNet-18, and
EfficientNet-B0, achieved the highest F1-Score among all models. This marked
improvement can be attributed to the ensemble method’s capacity to syner-
gistically leverage the unique strengths of each constituent architecture, thereby
enhancing overall classification accuracy and model robustness. The combination
of diverse staining information, cost-sensitive learning, and ensemble techniques
demonstrates a powerful approach to addressing the challenges of renal amyloi-
dosis classification in imbalanced datasets.

4.2 Results using Few-Shot Learning

Figure 4 reveals a significant divergence in performance trends between baseline
models and Few-Shot Learning (FSL) models. While baseline models trained on
the complete multi-stain dataset consistently outperformed those trained exclu-
sively on PAS-stained images (as shown in Figure 2), FSL models exhibit the
opposite behavior. FSL models trained solely on PAS-stained images achieve



14 Silva Santos et al.

Fig. 3. Comparison of F1-scores for baseline models trained on multi-stain samples,
without (blue) and with (red) cost-sensitive learning (CSL). The ensemble-based model
(green) demonstrates superior performance.

superior results compared to their counterparts trained on the full multi-stain
dataset.

This performance disparity can be attributed to the unique learning mech-
anism of prototypical networks employed in our FSL models. Prototypical net-
works generate class prototypes by averaging the embeddings of samples in the
support set. When the training dataset encompasses images with diverse stain-
ing characteristics, as in the full dataset, the resulting embedding space can be
heterogeneous. This heterogeneity potentially introduces outliers that negatively
impact the representativeness of the prototypes.

Conversely, utilizing a dataset with a single stain, such as PAS, produces a
more homogeneous embedding space, leading to more robust and representative
prototypes. This homogeneity enables the FSL model to generalize more effec-
tively from limited data, a crucial aspect of FSL where models are trained on a
small number of samples.

Therefore, while a diverse dataset proves beneficial for traditional machine
learning models, as evidenced by the baseline model performance, the unique
characteristics of FSL and its reliance on prototype-based learning render a
homogeneous dataset, even if limited to a single stain, more advantageous for
achieving optimal performance. This finding underscores the importance of con-
sidering the specific learning paradigm when selecting and preparing datasets
for different machine-learning approaches in medical image analysis.

The application of Cost-Sensitive Learning (CSL) to models trained on PAS-
stained images yielded a significant performance improvement, as illustrated in
Figure 5. Following the methodology employed for the baseline classifier, we
constructed an ensemble using the three top-performing models. This ensem-
ble achieved a remarkable F1-Score of 93.8%, surpassing all individual models.
This outstanding result underscores the ensemble classifier’s ability to effectively
leverage the strengths of multiple architectures, particularly when combined with
CSL in the context of Few-Shot Learning. The superior performance of this ap-
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Fig. 4. Comparison of F1-scores for Few-shot Learning (FSL) models trained with
images in all stains (blue) and models only trained with images in PAS stain (red).
Models for PAS stain demonstrate superior performance.

proach demonstrates its potential for addressing the challenges of class imbalance
and limited data in renal amyloidosis classification.

Fig. 5. Comparison of F1-scores for Few-Shot Learning (FSL) models trained on PAS-
stained images, without (blue), and with (red) Cost-Sensitive Learning (CSL), and
the ensemble model. Only one model yielded the best result using Euclidean distance
(Euc). The vast majority achieve the best performance using cosine similarity (Cos)
as distance metrics in the prototypical networks. The ensemble-based model (green)
demonstrates superior performance.

Table 2 presents the F1 scores of the five best-performing classifiers. Few-shot
learning (FSL) demonstrates significant potential for renal amyloidosis classifica-
tion, particularly when combined with Cost-Sensitive Learning (CSL). However,
several limitations warrant further investigation.

The generalizability of this approach to other glomerular lesions requires
careful examination, as our study focused specifically on amyloidosis. Future re-
search should evaluate FSL’s efficacy in classifying lesions with diverse visual
characteristics and varying levels of data availability. The reliance on PAS stain-
ing for optimal performance raises concerns about applicability in settings where
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this technique is not standard practice. Our findings highlight the potential im-
pact of specific staining methods on FSL model performance, emphasizing the
need for comprehensive validation across various staining protocols.

While stratification helps mitigate bias in prototype construction, the risk of
biased prototypes persists if the limited samples available do not fully capture the
lesion’s true diversity. Additionally, the computational demands and complexity
of FSL, especially with sophisticated architectures like prototypical networks,
may present implementation challenges in resource-constrained environments.

Our results indicate that conventional CNNs require substantially more data
for effective generalization, as evidenced by the baseline performance dispar-
ity between models trained on the entire dataset versus those trained solely on
PAS samples. In contrast, FSL classifiers, particularly prototypical networks,
demonstrate superior performance with limited data. This phenomenon can be
attributed to the fact that large volumes of data may introduce outliers, poten-
tially compromising the accuracy of generated prototypes.

These findings underscore the potential of FSL in addressing the challenges
of limited data and class imbalance in medical image classification, while also
highlighting areas requiring further research and optimization.

Table 2. Rank of the 5 best classifiers. The term CSL indicates using of cost-sensitive
learning while Cos and Euc indicate the type of distance metric for few-shot-learning
(FSL) models.

Architecture Dataset F1-Score
FSL-CSL-Ensemble + CSL PAS 0.938

Inception + CSL (Cos) PAS 0.916
Baseline-Ensemble ALL 0.905

EfficientNet-B4 + CSL (Cos) PAS 0.897
Inception + CSL (Euc) PAS 0.893

5 Conclusions

This study investigated the integration of conventional Machine Learning (ML)
techniques with Few-Shot Learning (FSL) to improve the automatic classification
of renal amyloidosis. The inherent imbalance in the dataset, with amyloidosis
being a rare condition, posed significant challenges for traditional ML methods.
The results indicate that while standard ML approaches, even those designed
to address class imbalance, may not independently achieve robust performance,
their combination with FSL shows considerable promise.

Our ensemble-based model achieved an impressive F1-score of 93.8%, sur-
passing related studies that dealt with datasets featuring less severe imbalance
ratios. Incorporating established methods like Cost-Sensitive Learning (CSL)
with FSL techniques significantly enhanced overall classification performance.
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The superior outcomes observed with FSL models, particularly when applied
to PAS-stained samples, highlight FSL’s ability to leverage limited data for im-
proved generalization, which is crucial in medical datasets often lacking data
abundance.

A significant contribution of this research is the development of a novel multi-
stain dataset consisting of 11,674 images of renal glomeruli (available under re-
quest), annotated across nine classes with four different stains. This dataset ad-
dresses a crucial gap in computational pathology, given the challenges associated
with gathering and annotating such a large volume of glomerular images.

The study also highlights the potential for classifying amyloidosis without
relying on Congo red staining, the current diagnostic gold standard. If success-
ful, this innovative approach could significantly streamline the diagnostic pro-
cess. The findings encourage further exploration of this methodology for other
glomerular lesions, potentially leading to a computer-aided diagnosis tool that
would greatly aid pathologists in diagnosing glomerular diseases.

Additionally, the research underscores the limitations of conventional CNN
approaches when faced with limited data, as evidenced by lower performance
with stratified data in baseline models. This emphasizes the need for innovative
approaches like FSL to improve outcomes when dealing with scarce data, a
common challenge in medical image analysis.

Future work should focus on expanding the dataset to include a wider variety
of amyloidosis presentations and exploring advanced techniques to further reduce
prototype bias. This will enhance the robustness and accuracy of FSL models
in classifying renal amyloidosis and ensure better generalization across different
manifestations of the disease.
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