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Abstract—This paper proposes a novel multi-task learning
framework for joint sex classification and age estimation from
panoramic dental radiographs. Our proposed method combines
masked autoencoders for self-supervised pretraining on large-
scale unlabeled data, a Kolmogorov-Arnold network (KAN)
to model nonlinear relationships between dental features and
demographic labels, and a dynamic logarithmic loss function
to balance sex classification and age regression tasks within a
Vision Transformer (ViT) architecture. The proposed framework,
so called Simultaneous Estimation of Sex and Age via KAN
(SESA-KAN), achieved a mean absolute error of 3.39 years for
age estimation and an F1-score of 94.2% for sex classification
on real-world datasets. Comparative evaluations showed average
improvements over existing methods, with a 0.5-year reduction
in age estimation error and a 7.5 percentage point increase in
sex classification accuracy. The results highlight the effectiveness
of integrating self-supervised pretraining, KAN-based feature
decomposition, and adaptive task balancing for multi-task medi-
cal image analysis. This work advances automated demographic
analysis in dental radiography, with potential applications in
forensic dentistry.

Index Terms—Multi-task learning, panoramic radiographs,
forensic dentistry, sex classification, age estimation.

I. INTRODUCTION

Due to the durability of teeth and jaws under extreme
conditions, these human structures serve as reliable sources
of information about an individual’s age, ancestry, geographic
origin, sex, past habits, and pathologies [1]. In situations
where documentation is unavailable or unreliable, such as the
identification of unaccompanied refugees, individuals under-
going adoption, or bodies in advanced decomposition—facial,
panoramic radiographs are reference tools for determining
biological sex and age with accuracy [2].

Dental panoramic radiographs are widely used as non-
destructive diagnostic tools, enabling the extraction of com-
prehensive information for constructing biological profiles [3].
However, traditional approaches, such as those based on dental
maturity stages [4], face limitations. These include subjectivity
in the assessment of dental development stages, exclusion of
cases involving missing teeth or dental conditions, and reduced
applicability in highly complex forensic scenarios [5]–[7]. This
highlights the need for more objective and robust methods
capable of addressing variability while ensuring reliable per-
formance across diverse contexts.

In the literature of computational dentistry, some methods
have demonstrated extensive applicability in medical image

analysis [8]–[13]. Deep learning-based methods offer several
advantages, including the simultaneous analysis of a broad
range of dental features and their interrelationships, remaining
effective in cases of suboptimal dental conditions [14]. In
[15], for instance, convolutional neural networks (CNNs) have
achieved a 96% reduction in processing time when analyzing
radiographic databases.

Moving beyond single-task approaches, multi-task learn-
ing (MTL) reduces redundancy, optimizes computational re-
sources, and often improves accuracy and generalization across
tasks. These advances have facilitated the development of more
adaptable and reliable methodologies in forensic dentistry,
particularly through the use of panoramic radiographs [7],
[16]. Despite the advances in MTL, its application in forensic
dentistry still faces challenges, such as balancing tasks of
varying complexity and the need for efficient sharing of rep-
resentations without compromising the performance of each
individual task. The scarcity of annotated and diverse datasets
limits the robustness of the solutions developed. Therefore it is
essential to investigate strategies that improve the adaptability
of models, ensuring the reliability required for clinical and
forensic applications.

A. Related work

Table I provides an overview of key state-of-the-art studies
that address sex classification and/or age estimation using
panoramic radiographs. The table outlines the proposed
architectures, dataset characteristics, and the results achieved,
offering a comprehensive summary of advancements in this
field. Each work listed in the table is subsequently examined
and discussed in detail.

Sex classification: Milošević et al. (2019) [7] used the
VGG-16 architecture to achieve an accuracy of 96.87%,
considering a set of 4,000 dental images of individuals
aged 19–85 years. The authors observed a slight decline in
performance as patient age increased, attributed in part to the
scarcity of samples. Ciconelle et al. (2023) [18] worked with
a dataset containing 207,946 radiographs and observed that
the algorithm’s effectiveness was affected by variables such
as resolution, age, and sex, presenting the best results for
individuals over 16 years of age, mainly women. Hougaz et
al. (2023) [19] used a set of 16,824 panoramic radiographs
to train and evaluate models aimed at sex classification,



TABLE I
WORKS ON SEX CLASSIFICATION AND AGE ESTIMATION USING PANORAMIC RADIOGRAPHS IN COMPARISON WITH OURS.

Reference Architecture Age range Data set Performance
Sex Age (mean absolute error)

[17] VGG-16 19 - 85 4,000 (images) ACC = 96.87% ± 0.96% -
[18] ResNet - 207,946 (images) ACC = 95.02% -
[19] EfficientNet V2-L - 16,824 (images) F1 = 91.43% ± 0.67 -
[20] VGG-16 19 - 90 4,035 (images) - 3.96
[15] CNN architecture 2 - 89 50,000 (images) - 3,26 ± 3,06
[21] EfficientNet-B7 1 - 90 7,666 (images) - 4.46
[22] VGG-16 19 - 86 86,495 (teeth) F1=74.90% ACC = 76.41% 4.94
[23] EfficientNet-B0 3 - 18 5.132 (images) ACC = 87,38% 1.96
[24] VGG-16 7 - 25 4.557 (images) F1= 86,3% 0,864 ± 1,6
[16] EfficientNet V2-L 1 - 90 7,666 (images) F1 = 90.37% ± 0.54 5.66 ± 0.22

Ours SESA-KAN 1 - 90 7,397 (images) F1 = 94.21% ± 0.004 3.39 ± 3.21

with a sample distribution of 37.7% male patients and
61.3% female patients. Among the pre-trained models of the
EfficientNet family tested, EfficientNet V2-L presented the
best performance, achieving an F1-score of 91.43%.

Age estimation: Heinrich et al. (2024) [15] trained a custom
CNN on 50,000 radiographs spanning ages from 2 to 89
years, with a focus on its integration into human identification
systems. In contrast, Milošević et al. (2022a) [20] evaluated
several pre-trained CNNs, such as DenseNet201, ResNet50,
and VGG16, using 4,035 panoramic radiographs and 76,416
segmented images of individual teeth (ages ranging from 19 to
90 years). Despite the introduction of an attention mechanism,
the VGG16 model achieved the best performance. Liang et
al. (2023) [21] explored architectures such as ConvNeXt-V2,
Vision Transformer (ViT) and EfficientNet on a dataset of
7,666 radiographs (4,621 women and 3,045 men), having the
EfficientNet presented the best results.

Sex classification and age estimation: Recent research adopts
a multitasking approach to simultaneously estimate age and
sex from panoramic radiographs, optimizing the use of shared
information. Milošević et al. (2022b) [22] used a dataset
composed of 86,495 images of individual teeth, extracted from
2,899 panoramic radiographs of individuals aged between
19 and 86 years, with a predominance of female samples
(59.03%). Despite exploring the multitask approach, the results
were inferior to those obtained with single-task models, indi-
cating potential challenges in integrating multiple tasks in this
scenario. In a different context, He et al.(2024) [24] analyzed
cephalometric radiographs with the VGG16-MultiTask model,
but their focus was limited to children and adolescents between
3 and 18 years old. Hirunchavarod et al.(2024) [23] presented
DeepToothDuo, which employed an EfficientNet-B0 model
pre-trained on ImageNet to analyze 5,132 panoramic radio-
graphs, but targeted exclusively at young Thai individuals,
aged between 7 and 25 years old and with permanent teeth.
Finally, Prado et al. (2024) [16] investigated an approach
based on an additional parameter, applying to four variants
of an EfficientNet. The EfficientNetV2-L demonstrated the
best performance, standing out in sex classification and age

estimation.

B. Contributions

We introduce here a Simultaneous Estimation of Sex and
Age in a multi-task architecture trained with a Kolmogorov
Arnold Network (SESA-KAN). Our network integrates self-
supervised ViT pre-training with Mask Autoencoder (MAE),
optimized through a KAN to construct an end-to-end deep
learning framework. To achieve the MTL synergy, SESA-KAN
incorporates a dynamically weighted adaptive loss function
that adjusts task weights in real-time, enhancing learning effi-
ciency during KAN training. The results demonstrate superior
performance compared to the only method previously reported
in the literature for simultaneous sex and age estimation from
panoramic radiographs, evaluated on a dataset with broad age
and sex distribution [16].

II. SIMULTANEOUS ESTIMATING SEX AND AGE

SESA-KAN is organized into two main steps, as depicted
in Fig. 1. In the first step, a ViT encoder was pre-trained as a
MAE. This model learns latent representations that capture
essential features of the images, in the absence of labels.
In the second stage, the radiographic image is segmented
into patches and processed by this pre-trained encoder. The
output of this ViT encoder, which consists of a latent feature
vector, is then directly connected to a final layer comprised
of a KAN, which acts as a decoder model, translating latent
representations into final age and sex predictions. Ultimately,
this layer takes advantage of the extracted representation to
integrate the two tasks into a synergistic model.

A. MAE

The backbone of SESA-KAN leverages a ViT model pre-
trained on an unlabeled dataset of dental radiographs, using the
MAE [24] self-supervised training protocol. This pre-training
aims to achieve meaningful intermediate representation in a
latent space of reduced dimensionality, building a better and
more efficient encoding of information in the MTL-based ViT
encoder for the final sex and age estimation.

In the pre-training phase of SESA-KAN, images are divided
into patches, with a random subset of input tokens masked.
Encoding is applied exclusively to the visible patches, using



Fig. 1. SESA-KAN architecture. (I) a pre-trained model using dental radiographs and (II) the end-to-end SESA-KAN framework for multi-task age and sex
estimation from panoramic radiographs.

Fig. 2. Example of reconstruction of a dental radiograph image. From left to right: original image, masked image, and reconstructed image. The percentage
of masked patches was 75%.

ViT blocks to process these tokens and produce a latent
representation of the input data. Pre-training is conducted
in an unsupervised manner, where the latent representations
are processed through a ViT decoder. The reconstruction loss
is defined as the mean-squared error (MSE) between the
reconstructed and original images.

Figure 2 illustrates the reconstruction process achieved by
MAE using a ViT-L(arge)/16 model on a sample from the
validation set. The figure displays the original image, the
masked version (with 75% of the pixels hidden), and the
model-generated reconstruction. The results illustrates that,
after pre-trained, MAE captures key structural details, such
as tooth contours and essential anatomical features, although
certain fine details and contrast variations may not be perfectly

recovered.

B. KAN

While multi-layer perceptrons (MLPs) are grounded on
the universal approximation theorem (UAT), which asserts
that any function from a specific function space, f , can be
approximated by a neural network to within an arbitrary error
ϵ > 0, given sufficient neurons and a suitable closeness
criterion, KANs are based on the Kolmogorov–Arnold repre-
sentation theorem (KART). The latter states that for xi ∈ [0, 1],
any multivariate continuous function f(x0, x1, . . . , xn) can be
decomposed into a superposition of continuous 1-dimensional
functions such that



f(x0, x1, . . . , xn) =

2n+1∑
q=1

Φq

(
n∑

p=1

ϕq,p(xp)

)
, (1)

where ϕq,p : [0, 1] → R and Φq : R → R. This means that
instead of relying on approximations of UAT, KART assures
that just a polynomial number of univariate functions (Φq

and ϕq,p) should be learned in order to fully represent f . A
KAN layer, as defined in [25], with nin input neurons and
nout output neurons is defined from a collection of univariate
functions ϕij - more specifically, the j-th entry of the output
vector y is given by

yj =

nin∑
i=1

ϕij(xi) . (2)

By stacking Eq. 2, one opens up the possibility of creating
deeper and wider networks. Given the input activations xl, we
can define the l-th layer of a KAN as the application of the
function matrix Φl = (ϕl,i,j):

xl+1 =


ϕl,1,1(·) ϕl,1,2(·) . . . ϕl,1,nl

(·)
ϕl,2,1(·) ϕl,2,2(·) . . . ϕl,2,nl

(·)
...

...
...

ϕl,nl+1,1(·) ϕl,nl+1,2(·) . . . ϕl,nl+1,nl
(·)


︸ ︷︷ ︸

Φl

xl.

(3)
Thus, we can formally define a L-layered KAN as

KAN(x) = (ΦL−1 ◦ ΦL−2 ◦ · · · ◦ Φ0)(x). (4)

Originally, ϕ(x) = wbb(x) + wsspline(x), where wb and ws,
are learnable parameters. b(x) is a basis function (in our work,
b(x) = x · σ(x), where σ(x) is the logistic sigmoid), and
spline(x) is a linear combination of B-splines (in our work,
splines are cubic), such that

spline(x) =
∑
i

ciBi(x) (5)

where ci are learnable coefficients. In practice, KANs need
fewer input parameters than MLPs while achieving compet-
itive accuracies [25], [26]. Since every function in Eq. 4 is
differentiable, KANs can easily be trained with traditional
machine learning algorithms such as backpropagation (in our
work, we used AdamW [27]).

C. Dynamic logarithmic weighting loss

In MTL, the goal is to optimize multiple loss functions
simultaneously, requiring a strategy to combine them into a
single value, or to find solutions where all loss functions are
optimized together [28]. The most direct way to do that is
through a weighted linear sum of the losses of each individual
task [29]. The specific losses of each task are summed,
resulting in a single scalar loss value. This method presents
challenges, mainly due to the sensitivity of the model per-
formance to the choice of weights for each loss. Tuning these

hyperparameters can be expensive in terms of computation and
time, since the search process requires multiple experiments
and manual adjustment of the weights. To tackle this problem,
we explored dynamic algorithms capable of automatically
adjusting the relative weights of the losses based on task
performance, measured by appropriate metrics.

This way, we propose here a variation of the method
introduced in [29], an uncertainty-based weighting technique
in the context of convolutional neural networks for scene
understanding. An additional trainable parameter, σ, was in-
troduced to model the task-dependent uncertainty, known as
homoscedastic uncertainty, which is intrinsic to the nature
of the task and cannot be reduced simply by increasing the
volume of training data. A dynamic logarithmic weighting
of the losses was implemented, which allows the adaptive
adjustment of the weights between the different classification
(sex) and regression (age) tasks. For the KAN decoder weights,
the learnable parameters for layer l are the G + k learnable
B-spline coefficients c(l,i,j) ∈ RG+k of each edge activation
ϕl,i,j - where G is the grid size and k the B-spline order - the
weight w(l,i,j)

b of the activation’s basis function and the weight
w

(l,i,j)
s of its associated spline. Therefore, for each layer l with

nl input neurons and nl+1 output neurons, we have the col-
lection of learnable weight tensors Wl = {c(l),ws

(l),wb
(l)}

with c(l) ∈ Rnl×nl+1×(G+k) and ws
(l),wb

(l) ∈ Rnl×nl+1 .
Therefore the dynamic weighting can be defined as

L(WE ,W0, . . . , (6)

WL−1, σ1, σ2) =
L1(WE ,W0, . . . ,WL−1)

2σ2
1

+
L2(WE ,W0, . . . ,WL−1)

σ2
2

+ log(σ1σ2) , (7)

where WE are the weights from the ViT encoder, which is
fine-tunned during training, L1 denotes the loss for the age
regression task (managed as the mean squared error) while L2

is the cross-entropy loss (managed as the F1-score) for the sex
classification task, and σi is the uncertainty hyperparameter
for task i. Essentially, each loss contribution is inversely
proportional to the square of the level of intrinsic uncertainty
associated to the task, which means that a higher loss has
significantly more impact in tasks with low uncertainty and
more structure. The final regularization term log(σ1σ2) avoids
trivial minima that could be achieved as σ1, σ2 → +∞ and
improves convergence.

III. EXPERIMENTAL ANALYSIS

A. Materials

Two distinct datasets of panoramic radiographs were used
to train and evaluate the performance of SESA-KAN. Table
II summarizes the properties of the datasets used in our work.
The first dataset, consisting of 16,824 unlabeled radiographs,
was introduced in [19] and employed in our work for self-
supervised pre-training of the ViT encoder. This latter dataset



TABLE II
SUMMARY OF THE DATASETS USED IN THE EXPERIMENTAL ANALYSIS.

References Images Task Training
and test split

[19] 16,824 Self-supervised pre-training -
[16] 7,397a Fine-tuning and Training (6.152)

performance assessment and test (1.245)b

aAfter a pruning process.
bBy means of a cross-validation procedure.

Fig. 3. Examples of images removed after visual analysis: (a) The image
is labeled as 6 years old, but does not show deciduous teeth, indicating
possible inconsistency; (b) radiograph without adequate coverage of the oral
and maxillofacial region; (c) blurred head radiograph, without highlighting
the oral and maxillary region;

comprises 6,341 radiographs (37.7%) from male patients and
10,483 (61.3%) from female patients. The second dataset,
containing 7,666 radiographs labeled with gender and age
information, was introduced in [16]. A pruning process was
applied to this dataset to resolve labeling inconsistencies,
resulting in the exclusion of 269 images. This process resulted
in a final dataset of 7,397 radiographs.

The dataset pruning was conducted by using statistical anal-
ysis and visual inspection of the radiographs. The eliminated
images included those of low quality, instances with incon-
sistent age labels, radiographs that failed to meet the criteria
for a panoramic image, and those exhibiting excessive noise
or significant loss of contrast. Examples of some discarded
images are illustrated in Fig. 3.

The pruning process involved training a preliminary model
on the dataset of 7,666 images using 5-fold cross-validation
(CV). After running the best model obtained in the CV
against all images of the dataset, the resulting predictions were
analyzed to identify outliers, with residual analysis carried

Fig. 4. Segmentation of the original dataset in [16] by age group and absolute
error of the early classifier used in the pruning process. A significant number
of outliers can be observed up to the 61-70 age range, which highlights the
presence of inconsistent samples and the need for a pruning process.

TABLE III
SUMMARY OF THE DATASET OF PANORAMIC RADIOGRAPHS USED

ORGANIZED BY AGE GROUP AND SEX.

Age range Female Male Total

1-10 341 339 680
11-20 788 549 1337
21-30 1157 689 1846
31-40 819 505 1324
41-50 615 380 995
51-60 449 250 699
61-70 211 137 348
71-80 74 52 126
81-90 26 16 42

Total 4480 2917 7397

out by age group, according to Fig. 4. The resulting boxplot
allowed for the visual inspection and subsequently removal
of images with residuals above the third quartile. As a result,
269 images (3.51% of the dataset) were excluded. The pruned
dataset included patients aged between 1 and 90 years, with
4,480 images (60.56%) from female patients and 2,917 images
(39.45%) from male patients, and an average age of 32.47
years. Age groups above 60 years were underrepresented, a
factor to consider during result analysis. Following the pruning
process, the dataset was split into a training set with 6,152
images (83.12%) and a test set with 1,245 images (16.88%),
reserved for final evaluation using a cross-validation approach.
Table III summarizes the pruned panoramic radiograph dataset,
detailing the sample distribution across age groups for both
male and female patients.

B. Methodology and implementation details

To assess the performance of SESA-KAN, we compared
it against two alternative MTL methods: EfficientNetV2-L
[16] and ViT-L/16 (MAE) + MLP, which uses the same base
architecture as SESA-KAN but substitutes the KAN layer with
an MLP. All methods were trained independently using 6,152
images for training and 1,245 images for testing, following a



TABLE IV
BENCHMARK OF THE METHODS CONSIDERING AGE ESTIMATION AND SEX

CLASSIFICATION.

Method Age estimation Sex classification
(mean absolute error) (µF1-score)

EfficientNetV2-L [16] 3.89 86.7%
ViT-L/16 (MAE) + MLP 3.79 93.4%
SESA-KAN 3.39 94.2%

5-fold cross-validation strategy stratified to maintain propor-
tional sex and age distribution across the dataset.

The experiment based on EfficientNetV2-L followed the
methodology outlined in [16], using ImageNet pre-trained
weights and fine-tuning them on our pruned dataset. The ViT-
L/16 (MAE) + MLP setup was specifically designed to isolate
and evaluate the contribution of the KAN layer within the
SESA-KAN architecture by replacing it with an MLP layer.

The implementation was carried out using PyTorch. Models
were trained with a batch size of 16 on a computational
environment comprising a NVidia 4070 GPUs with 12 GB
of VRAM, 16 GB of RAM, and an AMD Ryzen 7 processor.
As regularization strategies, a weight decay of 0.01 was used
to mitigate overfitting by penalizing excessive weights. The
training process included 5 warm-up epochs, with an initial
learning rate of 1e−03 and a minimum threshold of 1e−06.

C. Comparison against other methods

Table IV presents a comparison of the three evaluated
methods over the testing dataset (running the 5-fold cross
validation procedure). The baseline configuration, based on
the EfficientNetV2-L framework described in [16], delivered
the weakest performance, with a mean absolute error of 3.89
years for age estimation and an F1-score of 86.7% for gender
classification. The inclusion of the self-supervised pre-training
strategy resulted in a slight improvement, reducing the error to
3.79 years and increasing the F1-score to 93.4%, highlighting
the benefits of using the ViT + MLP model pre-trained with
MAE.

The introduction of the KAN layer in the SESA-KAN
framework resulted in substantial average performance gains,
particularly in age estimation, where the error decreased by
0.5 years, and the F1-score improved by 7.5 percentage points
with respect to EfficientNetV2-L. These results underscore the
superiority of SESA-KAN, suggesting that the combination
of ViT (MAE) with the KAN layer enhances the proposed
framework.

D. Task-specific analysis

Figure 5 illustrates the relationship between observed and
estimated age by our proposed approach, with the red line
representing the ideal line where both ages would be equal.
SESA-KAN demonstrated a high correlation between the
estimated and the observed ages, with an R² of 92.0%. The
concentration of most points around the red line highlights the
accuracy of the model in generating predictions that are close

Fig. 5. SESA-KAN’s age estimation. The diagonal line represents perfect
predictions. While younger samples tend to align closely with the diagonal,
older samples exhibit greater variance.

to the observed values. It is noteworthy a slight dispersion for
older ages, which suggests greater variability in the estimates
for this age group.

Figure 6(a) presents a summary of the results of the mean
absolute error and median by age group on the testing set,
highlighting the model’s performance in different age groups.
The overall mean absolute error was 3.39, with considerable
variation between samples. In the groups ranging 1-30, the
error was above the average (3.39). It is noteworthy that the
worst performance was for ages between 71 and 80, and 81
and 90 years old. The composition of these latter groups
is predominantly formed by 126 and 42 training samples
(see Table III). This substantially decreased our method’s
performance in age estimation. Although the increase in mean
absolute error with aging is evident in Fig. 6(a), it does not
occur in a linear fashion, but with significant jumps in certain
age groups. Two significant increases in the mean absolute
error were observed during the age transitions. In the transition
between 61-70 and 71-80 years, the mean error increased by
2.46 years. The error peak occurred in the transition from 71-
80 to 81-90 years, registering an increase of 8.45 years in
relation to the previous age group transition.

Figure 6(b) shows the distribution of the absolute error in
age predictions for different age groups, highlighting trends
and variations in model errors according to age. A significant
incidence of outliers is noted in the 11-20 and 21-30 age
groups. Furthermore, from the 41-50 age group onward there
is a sharp increase in the inter-quartile range, indicating an
increase in the variability, in prediction errors. This increase
in error can be attributed to a combination of factors, including
data bias and the absence of specific dental markers at older
ages. After the age of 25, when the formation of perma-
nent teeth is complete, few anatomical changes associated
with dental maturation occur. This reduces the availability of
indicators to estimate age from radiographs, compromising
the accuracy of the model for older age groups [30]. This
limitation indicates that the correlation between dental age and
chronological age decreases substantially over time, making



Age range #Samples µ y
1-10 77 1.32 1.20

11-20 224 1.76 1.70
21-30 319 2.74 2.66
31-40 247 3.67 3.66
41-50 176 4.64 4.62
51-60 109 4.66 4.66
61-70 61 4.94 5.09
71-80 22 7.40 7.31
81-90 10 15.86 15.71
Total 1245 3.39 2.45

(a) (b)

Fig. 6. Age estimation distributed by age groups (mean absolute error as µ and the median absolute error as y) (a) and visualization of the mean absolute
error (b).

TABLE V
THE RESULTS OF SEX CLASSIFICATION BY AGE GROUP AND BY GENDER IN

THE TEST DATABASE.

F1-score (%)
Age range #Samples Female Male Both

1-10 77 76.2 94.7 75.1
11-20 224 97.8 95.1 93.7
21-30 319 99.4 97.1 96.9
31-40 247 99.9 96.3 96.9
41- 50 176 98.4 96.4 95.4
51-60 109 96.9 97.1 94.1
61-70 61 98.6 97.1 96.1
71-80 22 97.6 97.7 95.5
81-90 10 94.7 85.7 83.9

Total 1245 97.7 96.2 94.2

it difficult to differentiate between older individuals. This
challenge has also been observed in previous work [14],
[20], [21], reinforcing the need for a more balanced dataset
and techniques that incorporate other physiological indicators
relevant to these age groups.

The performance in sex classification is detailed in Table
V, which presents the average F1-score values for SESA-
KAN in different age groups, discriminating the results by
sex (female and male) and presenting the combination in both
sexes. The model obtained an overall F1-score of 94.2%. The
best performance was observed in the intermediate age groups,
especially between 31 and 40 years old, where the model
obtained F1-scores of 99.9% for female samples. While the
best performance for male samples was in the 71 to 80 year
old range, with an F1-score of 97.7%. In contrast, performance
was slightly lower in the extreme age groups, particularly
1–10 years and 81–91 years, where the combined F1-score
was 75.1% and 83.9%, respectively, the lowest values among
all groups.

Sex classification accuracy followed a pattern distinct from
age estimation, with lower performance in the extreme age
groups (children, 1–10 years, and elderly, over 80 years), and
higher accuracy in adults, corroborating previous studies [16],
[31]. In children, the lower efficiency could be attributed to

less pronounced morphological differences due to hormonal
influence, with more pronounced changes after puberty, es-
pecially in females who complete this development earlier
[32]. Studies such as in [33] and in [34] point out important
morphological criteria in children, such as the pronounced
chin, wider and more quadrangular in boys, and the eversion
of the gonic region, which is flat in girls and more prominent
in boys. At older ages, factors such as physiological changes
associated with aging, such as the masculinization of cranial
characteristics in women after menopause, and the loss of bone
strength in men, make it difficult to distinguish between the
sexes [32].

IV. CONCLUDING REMARKS

MTL leverages shared representations and inter-task rela-
tionships, allowing models to outperform single-task learn-
ing by exploiting synergies between related tasks. However,
applying MTL in forensic dentistry over panoramic radio-
graphs comes with challenges like balancing tasks of varying
complexity and accounting for anatomical variations across
different age groups. Additionally, the scarcity of large, well-
annotated datasets and the need to model intricate interactions
between dental features further complicate implementation
of MTL-based architecture. To address these challenges, we
introduced the integration of the ViT architecture, KAN lay-
ers, and a dynamic logarithmic weighted loss for multitask
balancing. This led to the development of SESA-KAN, which
achieved a mean absolute error of 3.39 years in age estimation
and an F1-score of 94.2% in sex classification.

Future research should investigate the generalizability of the
model across diverse populations, as well as the application
of interpretability techniques to clinically validate the learned
patterns. Moreover, the development of clinical impact studies
is essential to quantify potential benefits in diagnostic time,
error reduction, and operational costs, thereby supporting the
model’s adoption in dental and forensic practice.
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T. Y. Hou, and M. Tegmark, “Kan: Kolmogorov-arnold networks,” 4
2024. [Online]. Available: https://arxiv.org/abs/2404.19756v4

[26] S. Sohail, “On training of kolmogorov-arnold networks,” 2024. [Online].
Available: https://arxiv.org/abs/2411.05296

[27] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
2019. [Online]. Available: https://arxiv.org/abs/1711.05101

[28] O. Sener and V. Koltun, “Multi-task learning as multi-objective
optimization,” Advances in Neural Information Processing Systems,
vol. 2018-December, pp. 527–538, 10 2018. [Online]. Available:
https://arxiv.org/abs/1810.04650v2

[29] R. Cipolla, Y. Gal, and A. Kendall, “Multi-task learning using
uncertainty to weigh losses for scene geometry and semantics,”
Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pp. 7482–7491, 5 2017. [Online].
Available: https://arxiv.org/abs/1705.07115v3

[30] J. L. Prieto, E. Barberı́a, R. Ortega, and C. Magaña,
“Evaluation of chronological age based on third molar development
in the spanish population,” International Journal of Legal
Medicine, vol. 119, pp. 349–354, 11 2005. [Online]. Available:
https://link.springer.com/article/10.1007/s00414-005-0530-3
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