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ABSTRACT Podocyte degenerative changes are common in various kidney diseases, and their accurate
identification is crucial for pathologists to diagnose and treat such conditions. However, this can be a difficult
task, and previous attempts to automate the identification of podocytes have not been entirely successful.
To address this issue, this study proposes a novel approach that combines pathologists’ expertise with
an automated classifier to enhance the identification of podocytopathies. The study involved building a
new dataset of renal glomeruli images, some with and others without podocyte degenerative changes, and
developing a convolutional neural network (CNN) based classifier. The results showed that our automated
classifier achieved an impressive 90.9% f-score. When the pathologists used as an auxiliary tool to classify
a second set of images, the medical group’s average performance increased significantly, from 91.4±12.5%
to 96.1±2.9% of f-score. Fleiss’ kappa agreement among the pathologists also increased from 0.59 to 0.83.
Conclusion: These findings suggest that automating this task can bring benefits for pathologists to correctly
identify images of glomeruli with podocyte degeneration, leading to improved individual accuracy while
raising agreement in diagnosing podocytopathies. This approach could have significant implications for the
diagnosis and treatment of kidney diseases.

INDEX TERMS Computational nephropathology, podocyte degenerative changes, glomeruli, deep learning,
decision-making.
Clinical impact: The approach presented in this study has the potential to enhance the accuracy of medical
diagnoses for detecting podocyte abnormalities in glomeruli, which serve as biomarkers for various
glomerular diseases.

I. INTRODUCTION

PODOCYTE lesions can be caused by genetic predis-
position or by kidney injury resulting from infection,

toxicity, hemodynamics, or obesity. These lesions may be
severe, resulting in podocyte histological changes such as cell
swelling, vacuolization, cell detachment of the glomerular
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basement membrane, binucleation, and proliferation. Severe
podocyte lesions correlate with nephrotic level proteinuria,
or nephrotic syndrome [1], and can be present in collaps-
ing nephropathy, focal segmental glomerulosclerosis, lupus
nephropathy [2], diabetic nephropathy (DN) [3], [4] and
immunoglobulin A nephropathy (IgAN) [5].

Severe podocyte lesions may also induce genetic program
in tubular cells that provokes tubulointerstitial inflammation,
fibrosis, and tubular atrophy or favors the development of
focal and segmental glomerular sclerosis, contributing to pro-
gressive loss of renal function [4], [5]. Although reversible
slight podocyte lesions can usually be only perceived by
electron microscopy analysis, severe podocyte degeneration
can be diagnosed through the histological study of renal
glomeruli on light microscopy. In recent years, several auto-
mated, machine learning-based methods have been proposed
to aid in the visual analysis of renal tissue slides [6], [7], [8],
[9]. When writing this manuscript, the literature contained
no references to computational models specifically focused
on the automated classification of podocyte degenerative
changes using images of renal glomeruli.

Some authors segmented podocytes for quantitative stud-
ies in segmental sclerosis, diabetic nephropathy, and anti-
neutrophil antibody-associated glomerulonephritis [10], [11],
[12], [13], [14], [15]. Murazesk et al. [13] analyzed podocyte
morphological changes and depletion by segmenting them in
PAS-stained images. On the other hand, Barros et al. [15]
used attribute extraction and convolutional neural networks
(CNN) to classify glomeruli images as having or lacking
morphological changes in podocytes based on a small dataset
with low image diversity.

Although the reports mentioned above aimed to automate
the segmentation of podocytes in glomeruli images, this
task is not directly useful for making medical decisions
about the presence or absence of podocyte degeneration.
Instead, classifications are more relevant for this purpose.
Moreover, previous studies did not focus on datasets that
specifically included podocyte alterations diagnosed by
pathologists using light microscopy analysis. Therefore, the
models trained on these datasets were not reliably prepared
to segment podocytes within glomeruli. Additionally, these
datasets lacked diversity in terms of staining techniques. They
did not represent real-world images well and did not include
other lesions commonly associated with the disease under
study. As a result, these datasets provided limited examples
compared to those encountered in the routine practice of
pathologists.

Motivated by the advances of applying CNN in the field
of histology [16], [17] and by the desire to provide the
clinical translational aspect, this study aims to fill gaps
in computational pathology research on podocytes in renal
glomeruli. To this end, we developed an automated binary
classification algorithm based on CNN to classify glomeruli
images according to the presence of podocyte degeneration.
We compared the performance of this classifier to that of
three pathologists who evaluated the same images under three

different scenarios. In the first scenario, we assessed the
performance of the automated classifier alone. In the second
scenario, three pathologists visually analyzed the glomerular
images and determined whether podocyte degeneration was
present or absent using a standardmethod. Finally, the pathol-
ogists reevaluated the images based on the classifications
established by the automated algorithm. We compared the
results of each scenario with the level of proteinuria (the
nosological diagnosis) related to each image.

As an additional contribution, we created a new dataset of
glomeruli images with podocyte degenerative lesions. This
dataset consists of 1,143 samples stained with four different
techniques (PAS, H&E, PAMS, and trichome). It features a
variety of lesions (sclerotic, membranous, and hypercellular)
to represent the complexity of images encountered by pathol-
ogists in real-world practice. This diverse dataset enhances
the reliability of trained models, as they were applied to cases
where podocytopathy appeared under different image acqui-
sition conditions and in the context of associated diseases.
Finally, this new dataset may also encourage further research
on podocytopathy identification.

II. MATERIAL AND METHODS
The experiments were executed in three steps, following a
protocol inspired by the work of Ligabue et al. [18], which
evaluated the performance of a CNN in classifying immune
deposits using immunofluorescence images of renal biopsies.
The authors then compared the performance of the CNN
against that of a group of three trained pathologists.

For the first step, the goal was to obtain an automated
classifier capable of recognizing glomeruli with podocyte
degeneration visible by light microscopy. Several automated
classifiers (based on CNN architecture) were fitted (trained
and validated) using dataset D1. The performance of each
model in classifying the images in dataset D2 was ranked
to select the most efficient model. In the second step,
we assessed the performance of a group of three patholo-
gists who classified the images in dataset D2, to compare
their performance against that of the selected computational
model. Finally, after a period of 30 days had elapsed (a
time interval adopted to avoid classification bias), the same
group of pathologists evaluated the images in D2 again, this
time with the results from the automated classifier to assess
whether this information would influence (i.e., improve) the
pathologists’ performance. Figure 1 presents an overview of
the experiments performed.

A. IMAGE DATA
We assembled two datasets containing digital images of renal
glomeruli. Dataset 1 (D1) was used to train and test the
automated classifier, while Dataset 2 (D2) was used for per-
formance assessments. Figure 2 illustrates some examples of
the images that comprise datasets D1 and D2. The datasets
(D1 and D2) include images of glomeruli with various types
of podocyte injuries, such as degeneration, hyperplasia, and
hypertrophy. This diversity of podocyte injuries provides a
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FIGURE 1. Overview of the conducted experiment protocol. In Step 1, several models based on CNN architecture were
evaluated to select the one offering the best performance using dataset D2. In Step 2, we assessed three pathologists’
performance in classifying the images in dataset D2. In Step 3, we evaluated the performance of the same pathologists in
classifying the images in dataset D2 with the aid of the results obtained from the automated classifier selected in Step 1.

realistic representation of the types of cases encountered in
clinical practice, allowing the trained computational mod-
els to perform in a manner that reflects the complexity of
real-world scenarios. These images did not undergo any pre-
processing operations and were delivered to the classifiers
exactly as the pathologists provided them. This approach
enabled end-to-end processing, as proposed by Goodfellow
and colleagues [19].

The images from D1 were obtained by searching image
banks provided by two independent pathologists. More than
30,000 images were analyzed, with only 1,043 images
selected (513 with and 530 without podocyte degenera-
tion); the selected images employed four different types
of staining: PAS, H&E, PAMS, and trichrome (see stain
distribution in Table 1). The images originated from the
laboratories of different institutions, captured at resolu-
tions ranging from 238×201 to 1920×1440 pixels. In both
groups of images (with and without podocyte degenera-
tion), glomeruli contained other unidentified lesions and
hypercellular, membranous, and sclerotic lesions labeled by
pathologists. The visual inspection of the two independent
pathologists who labeled the images in D1 was considered
a gold standard used for training the CNN model. Impor-
tantly, these two pathologists were not part of the group
of three pathologists who performed the classification of
dataset D2.

The evaluation dataset (Dataset D2) was created using a
different protocol. It consists of 100 images of renal glomeruli
(50 with and 50 without podocyte degeneration) stained with
PAS, H&E, PAMS, and trichrome. In contrast to Dataset D1,

TABLE 1. Stain distribution in Dataset D1 according to glomeruli with and
without podocyte degeneration.

which was labeled solely based on visual inspection by two
pathologists, each image in D2 underwent visual inspection
and was annotated with proteinuria data as a gold standard.
Furthermore, each image in D2 was obtained from a different
patient (100 patients) to ensure robustness in the classification
results obtained from computational models. This approach
also increased the diversity of cases used to evaluate the CNN
model’s performance. The distribution of stains in Dataset D2
is shown in Table 2.

B. AUTOMATED CLASSIFICATION
The final automated classifier was developed by comparing
six different models, and the one that performed the best
was selected. Python 3.6 [20] was used for software cod-
ing, along with Tensor Flow 2.6 [21], Numpy 1.21.0 [22],
Scikit-learn [23], and KerasTuner [24] libraries. The exper-
iments were run on a desktop with an RTX 2080TI GPU,
64 GB of RAM, and an AMD Ryzen 3 CPU, all running on
Ubuntu 22.04 OS.

Three classical CNN [25] architectures were considered
for automated image classification: Inception Resnet-v2 [26],
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FIGURE 2. Samples from Dataset 1 (D1). Glomeruli with podocyte degeneration (a-d) and glomeruli without podocyte
degeneration (e-h).

TABLE 2. Stain distribution in Dataset D2 according to glomeruli with and
without podocyte degeneration.

Densenet201 [27], and Efficient-Net B3 [28]. These archi-
tectures were chosen due to the provision of reliable results
in similar tasks [29], [30], [31] and due to differences in
architecture concerning depth (the number of layers is fixed
in Densenet201 and Inception Resnet-v2, yet variable in Effi-
cient Net B3) and learning strategies (e.g., residual blocks
in Resnet, and dense layers in Densenet201). The three net-
work architectures were trained under two scenarios: A) from
scratch (FS) with random weight initialization, and B) using
transfer learning (TL) where each network was pre-trained
with the ImageNet [32] dataset. This combination resulted in
six network models to evaluate.

We fine-tuned the hyperparameters for each CNN model
using the hyperband [33], [34] algorithm, which incorporates
a Bayesian optimization strategy to expedite the search pro-
cess through adaptive resource allocation and early stopping
techniques prior to training.

To adjust the hyperparameters, in D1, the images were
randomly divided into two groups: 70% for training and
30% for testing, a common split percentage for training and
validatingmachine learningmodels. This split maintained the
proportion of images in each class, distinguishing between
those with and without podocyte degeneration. This split was
exclusively employed for adjusting the hyperparameters of
each network. This method, as opposed to a conventional ran-
dom selection of hyperparameters, yielded an enhanced set,

TABLE 3. Range of values considered during hyperparameter tuning.

TABLE 4. Best hyperparameter values of each model.

contributing to the mitigation of underfitting and overfitting
issues.

The hyperband algorithm fine-tuned critical hyperparame-
ters, such as learning rate, optimizer, batch size, loss function,
and the number of neurons in the final layers (dense layers)
of the network. Table 3 outlines the evaluated values for
each hyperparameter. Table 4 shows the results of the best
hyperparameter values found for each model candidate.
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After obtaining the best combination of hyperparameters
offered by the Hyperband algorithm, as depicted in Figure 1,
the training of candidate models involved a 10-fold cross-
validation. This process included dividing the D1 set into
10 validation subsets. As a result, each of the 6 network com-
binations underwent training and validation across 10 itera-
tions, utilizing one subset for validation and the remaining
subsets for training in each iteration. Consequently, after
these iterations, the cross-validation process yielded 10 dis-
tinct models. From these models, the one exhibiting the
highest F-score was chosen as the optimal model. Subse-
quently, the chosen model underwent a comparison with the
other optimal models in each of the six combinations.

Continuing our efforts to address the challenges of overfit-
ting and underfitting, and with the goal of augmenting sample
diversity throughout the model training process, we inte-
grated a data augmentation strategy into the training sets
marked in the cross-validation. This was achieved through
the implementation of the following operations: 8 rotations
at angles ranging from 30 to 310 degrees (at 30-degree inter-
vals), both vertical and horizontal flips, random adjustments
of brightness, and contrast variation. These operations were
carefully selected to expand the dataset while avoiding any
mischaracterization of the morphology of glomeruli images,
which could potentially hinder network learning and compro-
mise the overall classifier performance.

As a result of these augmentation techniques, the training
sets for each cross-validation round expanded significantly
from 1043 to 12516 images, with each original image gener-
ating 12 new images. This augmentation process contributes
to a more robust and diverse training dataset, fostering
improved generalization capabilities of the classifier.

We adopted an early stop strategy to limit training time,
in which training was interrupted whenever a sequence of
ten epochs did not reduce loss. This is a common practice
also designed to prevent overfitting and unnecessary training
time. Finally, after cross-validation and obtaining the 6 best
models, the D2 data set was used to test each model.

C. PATHOLOGIST CLASSIFICATION
To establish a baseline for CNN model performance compar-
isons, three pathologists classified the images in D2 as either
‘‘with’’ or ‘‘without’’ podocyte degeneration. This task was
performed exclusively by visually inspecting images without
any additional information. Importantly, the D2 classification
task was carried out by three pathologists who did not par-
ticipate in preparing or annotating either of the two datasets
considered herein (D1 and D2). Each of the three pathologists
is also affiliated with a different nephropathology institution.

To mitigate potential classification bias due to immedi-
ate re-analysis, a 30-day washout period was implemented
before the same three pathologists re-classified the same
images using the output from the automated classifier as
additional information. In other words, before deciding on
a given image, each pathologist was allowed to consult the
results obtained from the automated classifier. This approach

TABLE 5. Results of k-fold cross-validation indicated the Inception
Resnet101 v2 as the best CNN model.

allowed us to assess the pathologists’ performance both with
and without the support of the computational model, mini-
mizing the risk of over-reliance on the model output.

III. RESULTS AND DISCUSSION
The metrics used to assess the automated classifier and
pathologists’ performance were: accuracy, precision, recall,
F1-score, and area under the ROC (AUC) curve [35]. In addi-
tion to these metrics, we also calculated the reliability of
agreement between the three pathologists using the Fleiss’
Kappa [36] metric, precisely to determine whether the inclu-
sion of results from the automated classifier in the image
classification task altered inter-observer agreement.

Table 5 lists the average values the CNN models achieve.
The model that produced the highest F1-score (96.9%)
obtained through 10-fold cross-validation was Inception
Resnet101 v2 with transfer learning architecture, offering an
overall average of 94.7% of accuracy, 95.5% of precision,
92.3% of recall, and 93.7% of F1-score values. We selected
the best one with 96.9% of the F1-score from the ten models
obtained by cross-validation.

ROC curves were employed to illustrate the performance
of each classifier in conformity with the variability of the
discrimination threshold. Ideal/perfect performance is con-
sidered when a true positive rate of 1 and a false positive rate
of 0 are achieved. Figure 3 shows the ROC curves generated
by each model in classifying the images contained in D2.
Again, the pre-trained Inception Resnet 101 v2 offered the
best discrimination using this dataset, providing an AUC of
0.95 compared to 0.90 from the pre-trained Densenet201. All
pre-trained networks surpassed the results obtained by their
respective FS versions, which indicates improved perfor-
mance obtained from using pre-trained networks to classify
images of glomeruli with podocyte degenerative changes.

The pathologists’ performance improved when they con-
sulted the results from the automated classifier before
providing their classification determinations. Table 6 reveals
that the success rate of each pathologist improved inde-
pendently when using the information obtained from the
automated classifier. A comparison of the pathologists’ per-
formance before and after consulting the automated classifier

VOLUME 12, 2024 635



G. O. Barros et al.: Enhancing Podocyte Degenerative Changes Identification

FIGURE 3. Area under the curve (AUC) of the models when classifying images in the D2 dataset. The figure on the left shows a
comparison between the models trained with random weight initialization (‘‘from scratch models’’) and the same models trained
using transfer learning (‘‘pre-trained models’’). The pre-trained models presented a greater AUC in all cases, with the Inception
ResNet v2 network offering the best results (0.95, green dotted line).

FIGURE 4. Venn diagrams illustrate the distribution of images misdiagnosed by pathologists with and without
an automated classifier. Broader distribution and greater disagreement were observed (seven groups in
different colors on the left diagram) without the aid of the CNN model.

revealed that overall accuracy increased from 86.3 ± 10% to
95.0 ± 2%.
Considering the pathologists’ performance in images with

and without podocyte degeneration separately, the average
accuracy in analyzing images with podocyte degeneration
improved from 84.6±17% to 96.6±3%. In contrast, the
average accuracy of images without podocyte degenera-
tion improved from 88.0±5% to 98.3 ± 2%. Regarding
the pathologists’ performance considering images grouped
by staining technique: the overall accuracy for PAS-stained
images improved from 83.7 ± 9% to 94.5 ± 2%; for H&E-
stained images, from 80.0 ± 17% to 95.5 ± 5%; yet for
trichrome-stained images, no difference was observed as
average accuracy remained at 91.6 ± 7%; for PAMS-stained
images, a discrete decrease was observed, from 96.0 ± 6% to
94.6 ± 4% (within the range of standard deviation).
The automated classifier also contributed to an increase in

the degree of agreement (Fleiss’ kappa) between pathologists,
which rose from 0.59 (moderate agreement) in their initial

analysis to 0.83 (much better agreement) after introducing the
aid of the automated classifier – a significant improvement
of approximately 40%. Although Fleiss’ kappa is a metric
based on Cohen’s Kappa, it differs in that it assesses agree-
ment between three or more observers. This coefficient was
calculated to evaluate whether an automated classifier also
influences pathologists’ agreement when visually analyzing
images.

The increased concordance observed among the three
pathologists is particularly noteworthy, given that they are
affiliated with different centers. This finding is significant
because research reports [37], [38], [39] have shown that
pathologists working in the same center tend to exhibit
higher agreement rates. The use of pathologists from different
centers allowed us to more rigorously evaluate the efficacy of
the automated classifier as a support tool.

Figure 4 presents two Venn diagrams, which illustrate the
distribution of errors made by pathologists in their analy-
ses with and without the aid of the automated classifier.
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TABLE 6. Performance of three pathologists with and without the aid of
an automated classifier in classifying images from Dataset D2. The
availability of CNN model results showed an increase in overall
classification accuracy.

It is evident that, following the introduction of the classifier
as a support tool, the sets of images that the pathologists
misdiagnosed were different. For example, Pathologists A
and C committed errors on entirely different sets of images,
indicating a clear change in how the pathologists analyzed the
images using the information provided by the classifier.

IV. CONCLUSION AND FUTURE DIRECTION
This study introduces a novel ‘‘human-in-the-loop’’ approach
that integrates a convolutional neural network (CNN) with
expert pathologist input to accurately identify glomerular
podocytopathy. Our findings demonstrate the potential of
AI models to augment pathologists’ capabilities in visual
analysis of glomeruli with podocyte degeneration. To further
contribute to the field, we are making the datasets utilized in
this study publicly accessible. By sharing these curated data,
we aim to accelerate the development of robust computa-
tional models for classifying podocyte degenerative changes
in renal glomeruli images.

The limited quantity of training images and the involve-
ment of a relatively small number of pathologists in
the annotation process represent significant constraints on
the generalizability and robustness of our current models.
We acknowledge these limitations and plan to address them
in future work by expanding the dataset and involving a larger
cohort of pathologists.

We expect that pathologists will be able to adopt auto-
mated classifier tools to support the task of image analysis.
In our future work, we plan to expand and improve the
existing research by incorporating additional datasets to
build a multi-class tool capable of performing semantic
segmentation of podocytes in glomeruli. This expanded
tool will identify and locate podocytes and indicate the
specific type of affecting lesion, including normal, degen-
erative, hyperplastic, or hypertrophic. This comprehen-
sive analysis will provide a more nuanced understanding
of podocyte degenerative changes and aid in accurate
diagnosis.

Furthermore, we intend to explore and evaluate custom
models and other network architectures that may further
enhance the performance of the presently developed auto-
mated classifier. By investigating alternative deep learning
architectures, we aim to improve the accuracy and efficiency
of classifying podocyte lesions on conventional slides. This
is particularly important as human eyes can only diagnose
certain podocyte lesions under electron microscopy, which
is time-consuming and resource-intensive. By leveraging
advanced network architectures, we anticipate bridging this
diagnostic gap and enabling more efficient and accurate diag-
nosis of podocyte lesions.

Moreover, we recognize the importance of collaboration
and data sharing in advancing the field of podocyte degener-
ative change recognition. Therefore, we plan to collaborate
with other research institutions and experts to expand our
dataset and ensure a diverse and representative collection of
glomerular images. This collaborative effort will facilitate the
development of robust and generalizable automated classifier
tools that can be applied across different clinical settings and
populations.

CODE AND DATA AVAILABILITY
Network training scripts and the best podocyte degenerative
changes recognition CNN model will be freely available at
GitHub repository. Datasets D1 and D2 are available only to
researchers and students for academic purposes. Access can
be requested through the Pathospotter research group website
(http://pathospotter.uefs.br/) or by the following link.
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