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ABSTRACT

Glomeruli are histological structures located at the beginning of the nephrons in the kidney, having primary
importance in the diagnosis of many renal diseases. Classifying glomerular lesions is time-consuming and requires
experienced pathologists. Hence automatic classification methods can support pathologists in the diagnosis and
decision-making scenarios. Recently most of state-of-the-art medical imaging classification methods have been
based on deep-learning approaches, which are prone to return overconfident scores, even for out-of-distribution
(OOD) inputs. Determining whether inputs are OOD samples is of underlying importance so as to ensure the
safety and robustness of critical machine learning applications. Bearing this in mind, we propose a unified
framework comprised of unbounded open-set recognition and multi-lesion glomerular classification (membranous
nephropathy, glomerular hypercellularity, and glomerular sclerosis). Our proposed framework classifies the input
into in- or OOD data: If the sample is an OOD image, the input is disregarded, indicating that the model
“doesn’t know” the class; otherwise, if the sample is classified as in-distribution, an uncertainty method based on
Monte-Carlo dropout is used for multi-lesion classification. We explored an energy-based approach that allows
open-set recognition without fine-tuning the in-distribution weights to specific OOD data. Ultimately, our results
suggest that uncertainty estimation methods (Monte-Carlo dropout, test-time data augmentation, and ensemble)
combined with energy scores slightly improved our open-set recognition for in-out classification. Our results also
showed that this improvement was achieved without decreasing the 4-lesion classification performance, with an
F1-score of 0.923. Toward an unbounded open-set glomerular multi-lesion recognition, the proposed method also
kept a competitive performance.

Keywords: Glomeruli, multi-lesion classification, deep-learning, out-of-distribution detection, uncertainty esti-
mation, energy functions.

1. INTRODUCTION

Kidney disease markers are mostly found in the glomerular structures, presenting varied and heterogeneous
features. The glomerulus is a histological structure located at the beginning of the nephrons in the kidney,
formed by a network of capillaries. The main function of the glomeruli is the filtration of the blood that leads to
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urine production.1 As a primary filtering structure, the glomerulus is vulnerable to many types of lesions, leading
to various primary and systemic diseases. Although lesion recognition is time-consuming and requires experienced
pathologists, who quite frequently do not reach a broad consensus,2 this is an essential step to the diagnosis and
treatment of many renal diseases.3 In this context, considering recent advances in artificial intelligence methods
and computer-aided-diagnosis applied to medical imaging, automatic recognition of glomerular lesions emerges
as a promising alternative to aid pathologists in kidney diseases diagnose.

Deep-learning approaches, more specifically convolutional neural networks (CNN), have achieved state-of-
the-art results in several medical imaging tasks,4 including glomerular specific5 and multi-lesion6 recognition.
The main shortcoming of these neural architectures is that CNN predictions are usually based on softmax scores,
which are prone to return overconfident results.7 This situation is cumbersome mainly when the target image
belongs to a different domain (e.g., not a glomerulus), to an unknown class of the same domain (e.g., glomerulus
with an unknown lesion), or even when the classifier just makes a confident, but incorrect prediction. These
situations where the unknown classes have no constraints, i.e., when we do not bound the inputs to glomerular
domain or non-glomerular domain, are called unbounded open-set recognition.8 Since we do not want to separate
whether the image is a glomerulus with a novel lesion or a non-glomerulus, we can consider our problem as an
unbounded recognition: We only care about classifying the images into in- or out-of-distribution (OOD∗).

While OOD detection avoids providing a lesion label to subjects other than a glomerulus, or even a forced
misprediction for a glomerulus with an unknown lesion, robust glomerular multi-lesion recognition methods
should be able to reject unknown objects by considering a response for both in- and OOD images. By accounting
for all these challenges, and including an explicit “I don’t know” answer, a multi-lesion classifier turns into
an open-set recognition tool.9 This is precisely the context for building robust glomerular lesion recognition
methods, considering for instance the numerous types of glomerular lesions and multiple constraints in terms
of small amount of labeled data, unsatisfactory recognition effectiveness for specific lesions, and finally lack of
prediction uncertainty.

Considering open-set recognition tasks, some methods include expensive training procedures to enhance the
generalization of models for OOD data or to deal with known-unknown classes.8 In an unbounded open-set
context, such approach becomes infeasible as for instance it is not actually possible to account for all unknown
classes. Aiming to reduce this expensive process of fine-tuning to specific OOD data, we propose a open-set
recognition approach that is only trained on the glomerular multi-lesion data set. While previous work focus
on closed-set single-lesion or multi-lesion recognition, also susceptible to overconfident predictions, we propose
moving to an unbounded open-set glomerular multi-lesion recognition. For that, we conceived an effective inte-
grated framework that accounts for prediction uncertainty with an energy-based method and also exploits energy
distributions to deal with OOD data and unknown glomerular lesions. We hypothesize that an energy-based
method (see Section 3.1) combined with uncertainty estimation approaches (see Section 3.2) allow better in- and
OOD separation. To assess our hypothesis validation, we defined a multi-lesion scenario, including membranous
nephropathy, glomerular hypercellularity, and glomerular sclerosis. In summary, the main contributions of this
work are twofold: (i) An integrated framework to simultaneously handle multi-lesion glomerular classification
and open-set recognition; (ii) we demonstrate that combining energy scores with specific uncertainty estimation
methods can improve OOD detection, compared with using energy scores only.

2. RELATED WORK

Glomerular lesion classification has already been studied by few works.10,11 Just as there are different medical
taxonomies for glomerular classification, the previous works approach different types of lesions. Barros et al.5

proposed a glomerular hypercellularity recognition method based on feature extraction via classical image pro-
cessing algorithms and k-nearest neighbors. Their work used images stained with hematoxylin-eosin (H&E) and
periodic acid–Schiff (PAS) from a set of biopsy slides provided by Gonçalo Moniz Institute (FIOCRUZ). Using
the same data set, Chagas et al.6 applied a custom CNN combined with support vector machines for hyper-
cellularity classification, but also performing a new annotation assessing the following sub-types: endocapillary
hypercellularity, mesangial hypercellularity, and both lesions.

∗It is also called out-of-domain.



Closer to a wider multi-lesion scenario, Zeng et al.10 developed a classification pipeline for PAS-stained im-
ages considering the following lesions: glomerular hypercellularity, global sclerosis, segmental sclerosis and cres-
cents. The proposed approach relied in different deep-learning-based architectures for different tasks: U-NET for
glomerulus segmentation; and a custom pipeline for lesion classification combining DenseNet-121, LSTM-CGNet
and V-Net. Considering an even larger set of lesions, Uchino et al.11 proposed a deep-learning-based classifica-
tion method for: global sclerosis, segmental sclerosis, endocapillary proliferation, mesangial matrix accumulation,
mesangial cell proliferation, crescents and membranous nephropathy. Uchino et al.’s approach11 was based on
a simple training of a binary classifier for each lesion, using InceptionV312 as convolutional backbone. Even
though their work aggregated more lesions to the task, they assessed the models over an extremely unbalanced
data set, which resulted in a non reliable performance for some lesions. Both Zeng et al.’s10 and Uchino et
al.’s11 works perform multi-lesion glomerular classification considering predictions from a single neural network
model. As aforementioned, these predictions are usually based on softmax scores and tend to be overconfi-
dent even to OOD data. To the best of our knowledge, no study was conducted explicitly considering open-set
recognition on glomerulus data sets. For a closely related task, Cicalese et al.13 and Chagas et al.14 tackled
the problem of uncertainty estimation on glomerular lesion classification. Although uncertainty estimation and
open-set recognition are not the same task, they are related in a higher level of abstraction, since both tasks
also aim to approach the problem of overconfident outputs from neural networks. Cicalese et al.’s work13 de-
veloped a Lupus level classification framework on PAS-stained images, considering uncertainty estimation using
Monte-Carlo Dropout combined with a DenseNet-12115 architecture. Chagas’s work14 focused on membranous
nephropathy classification of H&E-stained images, presenting a comparison between Resnet-18, DenseNet-121
and Wide-ResNet architectures, also including uncertainty estimation with Monte-Carlo dropout. Both works
applied test-time data augmentation for model prediction, increasing robustness and capturing both model and
data uncertainty.16

There are several works on OOD detection, but most of them focuses on fine-tuning pretrained models with
specific OOD data.17,18 Among them, we explored the method proposed by Liu et al.,19 which consists of
using energy scores instead of softmax scores to distinguish in- and OOD data. Their approach allows one
to compute energy scores directly from a pretrained model, without the need to fine-tuning to OOD samples.
Nevertheless, their report shows that fine-tuning can lead to a better separation between in- and OOD data.
Considering this limitation, we decided to adopt their energy-based approach and investigate the combination
with an uncertainty estimation method to better separate in- and OOD data without the extra cost of retraining
the model. The proposed method is based on Monte-Carlo dropout, test-time data augmentation and ensemble-
based classification for uncertainty estimation. These uncertainty methods introduce data and model randomness,
which we believe can widen the difference between in- and OOD of the energy scores.

3. UNBOUNDED OPEN-SET RECOGNITION FOR GLOMERULAR
MULTI-LESION CLASSIFICATION

We propose a unified framework for open-set recognition on glomerular multi-lesion classification. The open-set
recognition task can be defined as unbounded because we do not differentiate the types of OOD data, i.e.,
we do not consider prior information about the unknown classes. This way, our proposed framework groups
novel glomerular lesions and out-of-domain data into the same OOD class. Figure 1 lays out our proposed
framework while detailing the following tasks approached in this work. For the first task, we propose a novel
method by combing energy-based scores (see Section 3.1) and uncertainty estimation approaches (see Section
3.2). We adopted Monte-Carlo dropout, test-time data augmentation, and ensemble-based model for uncertainty
estimation. These uncertainty-based approaches rely in adding randomness on both data and model, inspiring
us to bring the hypothesis that this variability can widen the in- and OOD energy scores. For the latter task, we
used the traditional softmax scores to find the most probable lesion. Since the adopted uncertainty methods are
based on sampling images/weights N times, both energy and softmax scores are averaged for these N predictions
and for the M models from the ensemble.

3.1 Energy-based out-of-distribution detection

To achieve robust predictions, a model should be able to return trustworthy scores for different input domains. If
we have a model trained on images of glomeruli, that model should indicate if a new input belongs to a different
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Figure 1: Proposed framework for open-set recognition on multi-lesion glomerular classification. Our framework
combines uncertainty estimation methods with energy scores. For OOD detection, a threshold value is set to
classify a new energy score. If the sample is classified as in-distribution, the lesion is assigned using averaged
softmax scores. Alternatively, if the sample is classified as OOD, we can interpret the output as the model saying
“I don’t know”, where we can disregard the sample or further evaluate it.

distribution. This task is called OOD detection and usually relies in the fine-tuning of pretrained models to
detect specific OOD data. Our goal was post-processing the output of pretrained models by an energy function,
without retraining the model considering specific data.19 An energy function E(x) : RD −→ R can be defined as
a function that maps each point of x to a single scalar called energy .20 The energy scores are computed from
the Helmholtz free energy, given by

E(x; f) = −T ∗ log(

K∑
i

efi(x)/T ),

where K is the number of classes, f(x) is the output from the last dense layer of the neural network, and T
is a temperature scaling value equal to 1 in the most cases. Using these energy scores from training and OOD
data, we set an energy threshold value to classify new images as in- or OOD samples (see Fig. 1). Liu et
al.19 demonstrate that one can use their energy function as a scoring function for any pretrained network or
as a trainable cost function to fine-tune the model. However, fine-tuning the model led to better results, which



Table 1: Summary of the data sets used in the experiments.
Glomerular lesion data set OOD data sets

Normal Membranous Hipercellularity Sclerosis Caltech101 BreakHis
869 2,066 1,237 510 9,146 9,109

brought us to the question of “how to improve the energy-based OOD detection without the costly fine-tuning
process?”. This question led us to hypothesize that by adding uncertainty estimation methods, we could improve
the separation of in- and OOD scores.

3.2 Uncertainty estimation combination

Our assumption is that, by introducing randomness on both data and model for uncertainty estimation, we can
achieve a wider variance in the energy distributions. As we performed a K-fold cross-validation (see Section
4), we needed to train K = M different models using M different training sets. For each model, we estimated
the uncertainty by combining Monte-Carlo dropout21 with test-time data augmentation.16 Monte-Carlo dropout
consists on keeping dropout layers activated during inference time, performing N predictions for each input image.
The final class prediction is usually the average of these N predictions, and the uncertainty score is commonly
assigned as the variance of these predictions. We inserted the dropout layer just before the last dense layer,
where we evaluated different probability values (see Section 4 for details). Test-time data augmentation has a
similar approach. Instead of using data augmentation only during training, we also applied it during inference
time for N predictions, averaging these predictions to a final output. The combination of these two methods is
illustrated in Fig. 1, where for each one of the M models random augmentation and random dropout are applied
during inference, performing an averaging fusion at the end. For the multi-lesion classification, we average the
softmax scores, as we aim at selecting the most probable class. Alternatively, we average the energy scores for
OOD detection.

As the cross-validation returns M models trained on the glomerulus data set, we used these models as a
M-model ensemble (see Fig. 1). Ensemble approaches consist of training different models (either differing from
random weight initialization or different training data) and performing a final prediction reducing all predictions
(usually) by averaging them. By adopting ensemble of multiple models we hope to increase reliability and validity
of the final output.22

4. EXPERIMENTAL ANALYSIS

4.1 Data set

We used anonymized images selected from the digital histological image library of FIOCRUZ, resulting in 4,682
H&E-stained images of human glomerulus with the following lesions: membranous nephropathy, glomerular
hypercellularity, glomerular sclerosis, and images with no lesion (referred as ”normal”). For more data acquisition
details, refer to Chagas et al.14 For open-set recognition, we used Caltech10123 and BreakHis24 data sets.
Caltech101 is a data set of object pictures belonging to 101 categories, mostly used for object detection. BreakHis
is a breast cancer histopathological image classification data set, containing images of breast tumor tissue collected
using different magnifying factors (40X, 100X, 200X, and 400X). We chose these two sets to investigate OOD
detection in two types of input data: broad object images and histology images. We wanted to evaluate how the
energy scores of a ”completely different” data set (Caltech) and a ”quite related” one (BreakHis) associated with
the glomerular data set. Despite the BreakHis belongs to a different domain, this data set contains H&E-stained
images, which have color distributions quite similar to the glomerular data set. Also, to make the BreakHis
images ”closer” to the training set, we sampled images considering only the same magnifying factor used on the
acquisition of glomerular images. Table 1 presents the class distribution of the glomerular multi-lesion data set
and the two OOD data sets.
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Figure 2: Ensemble-based evaluation protocol. Orange arrows represent the selection of the best model of each
fold considering F1-score on the validation set. Red arrows represent model predictions, which were evaluated
with and without Monte-Carlo dropout.

4.2 Evaluation protocol

The proposed evaluation protocol is illustrated in Fig. 2. The protocol was developed to consider two tasks: 1)
Multi-lesion glomerular classification, and 2) OOD evaluation. For the first one, we use the multi-class glomerular
data set for training, validation and testing. We separated 10% of the entire data set for testing, leaving the rest
to carry on a 5-fold cross-validation. Then, we used the best model of each validation fold considering the F1-
score criterion to perform a final prediction using a 5-model ensemble. For the second task, we used the 5-model
ensemble, while computed the energy-based scores to achieve a measurement that can be used to distinguish in-
and OOD data. For faster evaluation and to decrease the difference in size between the glomerular data set and
the OOD data sets, we sampled 450 images from each OOD data set, which is a number close to the glomerular
test set size (469).

Evaluation metrics: For the multi-lesion glomerular classification, we measured the following metrics: F1-
score, precision and recall. For the OOD detection task, since the task becomes a binary classification (in or
out), we measured the area under the receiver operating characteristic curve (AUROC), false positive rate (FPR)
and false negative rate (FNR).

4.3 Training procedure

The first part of our evaluation protocol is training a deep network model in a 5-fold cross-validation setup,
considering a test set for final evaluation. As deep-learning-based architectures have achieved state-of-the-art
results in several medical imaging classification tasks,4 we decided to use a CNN backbone for multi-lesion
glomerular classification. Our goal here is not to select the best architecture for the problem, but instead
we want to investigate the usage of a general CNN backbone combined with uncertainty estimation methods
and energy scores. In this context, we adopted the Wide-ResNet architecture15 as CNN backbone, which is a
ResNet25 variant with reduced depth and increased width. We used the Pytorch framework26 for training and
evaluating the models. All models were pretrained on ImageNet27 data set for faster convergence, updating the
final layer to four neurons respective to the four classes tackled in this work. AdamW optimizer28 was used
with a initial learning rate of 0.0001 with decay of 0.1 at every 30 epochs, considering a total of 100 epochs. All



Table 2: Comparative results of different Wide-ResNet configurations for multi-lesion glomerular classification.
These results refer to the weighted average metrics use to assess multi-classification performance.

Method F1-score Precision Recall

Without Monte-Carlo Dropout 0.923 0.923 0.923
With Monte-Carlo Dropout (p = 0.2) 0.919 0.919 0.919
With Monte-Carlo Dropout (p = 0.5) 0.923 0.923 0.923

Table 3: Confusion matrix for Wide-ResNet predictions on test set with Monte-Carlo Dropout (p = 0.5). The
rows represent ground-truth classes, and the columns represent predicted classes.

N M H S F1-score
Normal (N) 81 4 0 2 0.915

Membranous (M) 7 195 3 2 0.944
Hypercellularity (H) 2 2 115 5 0.935

Sclerosis (S) 0 5 4 42 0.824

experiments were executed on a machine with 8GB RAM and an NVIDIA GEFORCE GTX 1060. For training
and uncertainty estimation we used several random transformations at each batch for image augmentation. These
transformations include: resizing the smallest dimension of each image to 224 pixels followed by a random crop
of size 224 × 224 (thus keeping original aspect ratio); color transformations such as random contrast, random
gamma, and random brightness; noise addiction with gaussian noise, affine transformations, and random white
squares with size of 10% of image height (224 pixels).

4.4 Results and discussion

Table 2 shows the classification measures for the multi-lesion glomerular classification. We compared the Wide-
ResNet with or without Monte-Carlo dropout. For the experiment without Monte-Carlo dropout, we computed
the final scores by averaging the predictions from the five models. For the Monte-Carlo dropout cases, we used
50 predictions for each one of five models, and evaluated the dropout probability values of 0.2 and 0.5. We
can note that all results are quite close considering the selected measures, without a clear predominance of a
network. To better visualize inter-class predictions, we also present the confusion matrix in Table 3. Also, we
computed the F1-score for each class, which showed high scores for all classes. As expected, the framework
performed worse for glomerular sclerosis, as it is the most underrepresented class and is known to have some
morphological features similar to membranous nephropathy. This similarity can occur due to a sub-type of
membranous nephropathy that can include other lesions. Further studies need to be performed to address this
confusion between membranous nephropathy and other lesions in general.

For OOD detection, we computed the energy scores for in- and OOD, considering the proposed Wide-ResNet
variations. To compute the evaluation measures, we analyze these energy scores and define a threshold value.
Figure 3 presents the energy histograms of in- and OOD, highlighting the fact that the OOD curves are quite
close, with some minor variations of density in some areas. Another noteworthy behaviour is that Caltech101
and BreakHis energy distributions are very similar, almost overlapping. Considering that those data sets are
from very different domains, and BreakHis is also a data set of histology images, the plots indicate a robust
grouping of OOD data.

We assessed the OOD detection in two scenarios: Binary and multi-class classification. In the first scenario,
the energy threshold defines the input samples as in- or OOD data. We evaluated several threshold values
ranging from the minimum to the maximum energy, using a step of 0.01. For each threshold value t, if the
energy score is smaller than t, our framework provides a prediction as an in-distribution data; otherwise, the
image is predicted as OOD. With these predictions, we computed the AUROC to evaluate which Wide-ResNet
variation better separates in- and OOD data. Table 4 summarizes the AUROC alongside to false positive and
false negative rates for each Wide-ResNet configuration, showing that Wide-ResNet with Monte-Carlo Dropout
(p = 0.5) outperformed the other variations. As expected, TPRs and TNRs followed an order behaviour similar
to the AUROC for all three models. In addition, no great divergence between TPRs and TNRs was observed,
indicating no dominance for in- or out-distribution classes.



20.0 17.5 15.0 12.5 10.0 7.5 5.0 2.5 0.0
0.0

0.1

0.2

0.3

0.4

0.5

De
ns

ity

in-dist
caltech_sampled
breakhis_sampled

(a) Without Monte-Carlo Dropout

17.5 15.0 12.5 10.0 7.5 5.0 2.5 0.0
0.0

0.1

0.2

0.3

0.4

0.5

De
ns

ity

in-dist
caltech_sampled
breakhis_sampled

(b) With Monte-Carlo Dropout (p = 0.2)

15.0 12.5 10.0 7.5 5.0 2.5 0.0
0.0

0.1

0.2

0.3

0.4

0.5

De
ns

ity

in-dist
caltech_sampled
breakhis_sampled

(c) With Monte-Carlo Dropout (p = 0.5)

Figure 3: In- and OOD energy scores of different Wide-ResNet configurations.

Table 4: Comparative results of different Wide-ResNet configurations for OOD detection. The presented results
refer to measurements for binary classification.

Method AUROC FPR FNR

Without Monte-Carlo Dropout 0.847 0.111 0.194
With Monte-Carlo Dropout (p = 0.2) 0.847 0.146 0.157
With Monte-Carlo Dropout (p = 0.5) 0.854 0.101 0.189

The results shows that a highest dropout probability allowed for a higher AUROC, which indicates a better
in- and OOD separation. This behaviour corroborates with our initial assumption that introducing both data
and model randomness might lead to a better OOD separation. Thus, we can conclude that the uncertainty
estimation methods have potential to improve the OOD detection with energy-based scores. In addition, this
improvement was achieved without decreasing the classification performance and without retraining the models
to specific OOD data.

The last OOD detection scenario was the multi-class classification. In this context, instead of considering
predictions of in- and OOD only, we considered the “unknown” alternative to indicate as not belonging to a
known lesion class. Since the in- and OOD still have a relevant overlapping area (see Fig. 3), it is expected to see a
loss in performance compared to the binary classification and the previous glomerular multi-lesion classification.
Table 5 summarizes the confusion matrix for the Wide-ResNet with Monte-Carlo Dropout (p = 0.5) in this new
scenario of unknown class for multi-class recognition. Similar to the previous experiments, glomerular sclerosis
had the worst results, with the method providing an “I don’t know” answer for many images. Nevertheless, the
weighted average F1-score considering all classes was 0.850, which is a promising result.

5. CONCLUDING REMARKS

In this work, we proposed a unified framework for open-set recognition and multi-lesion glomerular classification.
Considering our prior decision of using energy-based scores for OOD detection, we hypothesize whether uncer-



Table 5: Confusion matrix for Wide-ResNet predictions with Monte-Carlo Dropout (p = 0.5) for multi-lesion
glomerular classification considering an unknown class. The rows represent ground-truth classes, and the columns
represent predicted classes.

N M H S IDK F1-score
Normal (N) 70 2 0 0 15 0.737

Membranous (M) 3 165 2 0 37 0.819
Hypercellularity (H) 2 0 102 2 18 0.745

Sclerosis (S) 0 2 2 26 21 0.650
“I don’t know” (IDK) 28 27 44 1 800 0.893

tainty estimations methods can improve the OOD detection performance. We demonstrated that our hypothesis
indeed improved AUROC for in-out recognition using models pretrained on glomerular multi-lesion classifica-
tion only. The main contribution resided in the improvements of OOD detection that were achieved without
fine-tuning to specific OOD data. In addition, the introduction of randomness of the uncertainty estimation
approaches did not result in performance loss compared with the original ensemble model without uncertainty
methods. Even though our proposed framework considers the open-set binary classification as a step before
multi-lesion classification (see Fig. 1), the multi-class OOD detection was important to verify what class was the
most misclassified. And not surprisingly, these misclassifications were occurring in the most underrepresented
class.

As future work, we plan to investigate if different approaches of uncertainty estimation have the same improve-
ment for OOD detection. Since Monte-Carlo dropout and test-time data augmentation comprises an uncertainty
estimation method based on sampling and averaging, it is indeed necessary to check how other Bayesian methods,
such as variational inference, might influence the energy scores distributions. Considering Monte-Carlo Dropout,
we want to study how the number and parameters of dropout layers influence the energy score distribution. Even
though the highest dropout probability achieved the best result, an optimal value should be found. We also plan
to develop a novel method to minimize the intersection area between in- and out-of-distribution energy scores.
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