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Abstract

Mainly when applied in the underwater environment, sonar simulation requires great computational effort due to the complexity
of acoustic physics. Simulation of sonar operation allows evaluating algorithms and control systems without going to the real
underwater environment; that reduces the costs and risks of in-field experiments. This paper tackles with the problem of real-
time underwater imaging sonar simulation by using the OpenGL shading language chain on GPU. Our proposed system is able to
simulate two main types of acoustic devices: mechanical scanning imaging sonars and forward-looking sonars. The underwater
scenario simulation is performed based on three frameworks: (i) OpenSceneGraph reproduces the ocean visual effects, (ii) Gazebo
deals with physical forces, and (iii) the Robot Construction Kit controls the sonar in underwater environments. Our system exploits
the rasterization pipeline in order to simulate the sonar devices, which are simulated by means of three parameters: the pulse
distance, the echo intensity and the sonar field-of-view, being all calculated over observable objects shapes in the 3D rendered
scene. Sonar-intrinsic operational parameters, speckle noise and object material properties are also considered as part of the acoustic
image. Our evaluation demonstrated that the proposed system is able to operate close to or faster than the real-world devices. Also,
our method generates visually realistic sonar images when compared with real-world sonar images of the same scenes.
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1. Introduction1

Simulation is an useful tool for designing and program-2

ming autonomous underwater vehicles (AUVs). That allows3

evaluating the vehicle behavior, without dealing with physical4

hardware or decision-making algorithms and control systems5

in real-time trials, as well as costly and time-consuming field6

experiments. AUVs usually demand expensive hardware and7

perform long-term data gathering operations, taking place in8

restrictive sites. When AUVs are not supported by an umbilical9

cable, and the underwater communication carries on by unre-10

liable acoustic links, the vehicle should be able to make com-11

pletely autonomous decisions, even with low-to-zero external12

assistance. While the analysis and interpretation of sensor data13

can be performed in a post-processing step, a real-time simula-14

tion is strongly necessary for testing and evaluation of vehicle’s15

motion response, avoiding involved risks on real-world rides.16

AUVs usually act below the photic zone, with high turbid-17

ity and huge light scattering. This makes the quality of image18

acquisition by optical devices limited by a short range, and ar-19

tificially illuminated and clear visibility conditions. To tackle20

with that limitations, high-frequency sonars have been used pri-21

marily on AUVs’ navigation and perception systems. Acoustic22

waves emitted by sonars are significantly less affected by water23
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attenuation, aiding operation at greater ranges even as low-to-24

zero visibility conditions, with a fast refresh rate. Although25

sonar devices usually solve the main shortcomings of optical26

sensors in underwater conditions, they provide noisy data of27

lower resolution and more difficult interpretation.28

By considering sonar benefits and singularities along with29

the need to evaluate AUVs, recent works proposed ray tracing-30

[1, 2, 3, 4, 5, 6] and tube tracing-based [7] techniques to simu-31

late acoustic data with very accurate results, although present-32

ing a high computational cost. Bell [1] proposed a simulator33

based on optical ray tracing for underwater side-scan sonar im-34

agery; images are generated by acoustic signals represented35

by rays, which are repeatedly processed, forming a 2D-array.36

Coiras and Groen [2] used frequency-domain signal processing37

to produce synthetic aperture sonar frames; in that method, the38

acoustic image is created by computing the Fourier transform39

of the acoustic pulse used to insonify the scene. For forward-40

looking sonar simulations, Saç et al. [3] described a sonar41

model by computing the ray tracing in frequency domain; when42

a ray hits an object in 3D space, three parameters are calcu-43

lated to process the acoustic data: the Euclidean distance from44

the sonar axis, the intensity of returned signal by Lambert illu-45

mination model and the surface normal; the reverberation and46

shadow phenomena are also considered in the scene rendering.47

DeMarco et al. [4] used Gazebo and Robot Operating System48

(ROS) [8] integration to simulate acoustic sound pulses by ray49

tracing technique, also producing a 3D point cloud of the cov-50

erage area; the reflected intensity takes into account the object51
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reflectivity, and the amount of Gaussian and salt-and-pepper52

noises applied in the sonar image is empirically defined. Gu et53

al [5] modeled a forward-looking sonar device, where the ultra-54

sound beams are formed by a set of rays; the acoustic image is55

significantly limited by a representation using only two colors:56

white, when the ray strikes an object, and black for shadow ar-57

eas. Kwak et al. [6] improved the previous approach by adding58

a sound pressure attenuation to produce the gray-scale sonar59

frame, while the other physical characteristics related to sound60

transmission are disregarded. Guériot and Sintes [7] introduce61

a volume-based approach of energy interacting with the scene,62

and collected by the receiving sonar; the sound propagation is63

defined by series of acoustic tubes, being always orthogonal to64

the current sonar view, where the reverberation and objects sur-65

face irregularities are also addressed.66

1.1. Contributions67

This paper introduces a novel imaging sonar simulator that68

presents some contributions when compared to the existing ap-69

proaches. Instead of simulating the sound pulse paths and the70

effects of their hits with the virtual objects, as presented by ray71

tracing and tube tracing-based methods [1, 2, 3, 4, 5, 6, 7], we72

take advantage of precomputed data (e.g., normals, distances,73

colors, angles) during the rasterization pipeline to compute the74

acoustic frame. In addition, all raster data are handled on GPU,75

accelerating then the simulation process with the guarantee of76

real-time response, in contrast to the methods found in [1, 2, 3,77

4]. Although the systems found in [1, 2, 3, 4, 5, 6, 7] focused78

on the simulation of specific sonar device, our simulator is able79

to reproduce two kinds of sonar devices: mechanical scanning80

imaging sonar (MSIS) and forward-looking sonar (FLS). The81

intensity measured back from the insonified objects depends82

on surface normal directions and reflectivity, producing more83

realistic simulated frames than binary representation, this lat-84

ter found in [5, 6]. The speckle noise is modeled as a non-85

uniform Gaussian distribution and applied to our final sonar86

image, which approaches to real-world sonar operation, differ-87

ently from [3, 4, 5, 6, 7]. On the other hand, we did not exploit88

the additive noise as it was considered in [3, 4]. Finally, it is89

noteworthy that our proposed system simulates physical phe-90

nomena since they are constrained to real-time (e.g. decision-91

making algorithms and control system tuning). Aware of this92

real-time constraint, the high computational cost phenomena93

such as reverberation is not included at this point, differently94

from [3, 7].95

The main goal here is to build quality and low time-con-96

suming acoustic frames, according to underwater sonar image97

formation and operation modes (see Section 2). The pulse dis-98

tance, the echo intensity and the sonar field-of-view parameters99

are extracted from the underwater scene during the rasteriza-100

tion pipeline, and subsequently fused to generate the simulated101

sonar data, as described in Section 3. Qualitative, quantitative102

and time evaluation results for the two different sonar devices103

are presented in Section 4, allowing the use of the proposed104

simulator by real-time applications. Conclusions and future105

work are drawn in Section 5.106

Figure 1: Imaging sonar geometry. By the projection process, all 3D points
belonging to the same elevation arc (represented as dashed orange line) will be
represented to the same image point in the 2D plane. Range r and azimuth angle
ψ are measured, and elevation angle θ is lost. Sonar coverage area is defined by
Rmin and Rmax.

2. Imaging sonar operation107

Sonars are echo-ranging devices that use acoustic energy to108

locate and survey objects in a desired area. The sonar trans-109

ducer emits pulses of sound waves (or ping) until they hit any110

object or are completely absorbed. When the acoustic signal111

collides with a surface, part of this energy is reflected, while112

other is refracted. The sonar data is built by plotting the echo113

measured back versus time of acoustic signal. The transducer114

reading in a given direction forms a beam. A single beam trans-115

mitted from a sonar is illustrated in Fig. 1. The horizontal and116

vertical beamwidths are represented by the azimuth ψ and el-117

evation θ angles, respectively, where each sampling along the118

beam is named as bin. The sonar coverage area is defined by119

Rmin and Rmax. Since the speed of sound underwater is known,120

or can be measured, the time delay between the emitted pulses121

and the respective echoes (named as time of flight) reveals how122

far the objects are (distance r), as well as how fast they are mov-123

ing. The backscattered acoustic power in each bin determines124

the echo intensity value.125

With different azimuth directions, the array of transducer126

readings forms the final sonar image. Since all incoming sig-127

nals converge to the same point, the reflected echoes could have128

been originated anywhere along the corresponding elevation arc129

at a fixed range, as depicted in Fig. 1. In the acoustic represen-130

tation, the 3D information is lost in the projection into a 2D131

image.132

2.1. Sonar characteristics133

Although sonar devices overcome main limitations of opti-134

cal sensors, they present more difficult data interpretation due135

to:136

a) Shadowing: This effect is caused by objects blocking the137

sound waves transmission, and causing regions behind them,138

without acoustic feedback. These regions are defined by a139

black spot in the sonar image, occluding part of the scene;140

b) Non-uniform resolution: The amount of pixels used to141

represent an echo intensity record in the Cartesian coor-142

dinate system grows as its range increases. This situation143

causes image distortions and object flatness;144
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(a) (b)

Figure 2: Different underwater sonar readings: (a) From a mechanical scanning imaging sonar and (b) from a forward-looking sonar.

c) Changes in viewpoint: Imaging the same scene from dif-145

ferent viewpoints can cause occlusions, shadows move-146

ments and significant changes of observable objects [9].147

For instance, when an outstanding object is insonified, its148

shadow is shorter, as the sonar becomes closer;149

d) Low signal-to-noise ratio (SNR): Sonars suffer from low150

SNR mainly due the very-long-range scanning, and the151

presence of speckle noise introduced by acoustic wave in-152

terferences [10];153

e) Reverberation: This phenomenon is caused when mul-154

tiple acoustic waves, returning from the same object, are155

detected over the same ping, producing duplicated objects.156

2.2. Types of underwater sonar devices157

The most common types of underwater acoustic sonars are158

MSIS and FLS. In the former, the sonar image is built for each159

pulse, with one beam per reading (see Fig. 2(a)); the resulting160

sonar images in MSIS are usually depicted on a display pulse by161

pulse, and the head position reader is rotated according to motor162

step angle. After a full 360◦ sector reading (or the desired sector163

defined by left and right limit angles), the accumulated sonar164

data is overwritten. The acquisition of a scanning image in-165

volves a relatively long time, introducing distortions caused by166

the vehicle movements. This sonar device is generally applied167

in obstacle avoidance [11] and navigation [12] applications. As168

illustrated in Fig. 2(b), the whole forward view of an FLS is169

scanned and the current data is overwritten by the next scan in a170

high frame rate, with all beams being read simultaneously; this171

is similar to a streaming video imagery for real-time applica-172

tions; this imaging sonar is commonly used for navigation [13],173

mosaicing [9], target tracking [14] and 3D reconstruction [15].174

3. GPU-based sonar simulation175

The goal of our work is to simulate two types of underwater176

sonar with low computational cost. The complete pipeline of177

the proposed simulator (from the virtual scene to the simulated178

acoustic data) is detailed in the following sections. The sonar179

simulator is written in C++ with OpenCV [16] support as Rock180

packages.181

Figure 3: The virtual AUV in Rock-Gazebo underwater scene.

3.1. Rendering underwater scene182

In Rock-Gazebo framework [17], Gazebo handles with phys-183

ical forces, while Rock’s visualization tools are responsible by184

the scene rendering. The graphical data in Rock are based185

on OpenSceneGraph framework, an open source C/C++ 3D186

graphics toolkit built on OpenGL. The osgOcean library is used187

to simulate the ocean visual effects. In our case, Rock-Gazebo188

integration provides the underwater scenario, allowing also real-189

time hardware-in-the-loop simulation with a virtual AUV.190

All scene aspects, such as world model, robot parts (in-191

cluding sensors and joints) and other virtual objects are defined192

by simulation description files (SDF), which use the SDFor-193

mat [18], an XML format used to describe simulated models194

and environments for Gazebo. Visual and collision geome-195

tries of vehicle and sensors are also described in specific file196

formats. Each component described in the SDF file becomes197

a Rock component, which is based on the Orocos real-time198

toolkit (RTT) [19], providing I/O ports, properties and opera-199

tions as communication layers. When the models are loaded,200

Rock-Gazebo allows interaction between real world or simu-201

lated system components with the simulated models. A result-202

ing scene sample of this integration is illustrated in Fig. 3.203

3.2. Sonar rendering204

A rendering pipeline can be customized by defining GPU205

shaders. A shader is written in OpenGL Shading Language206

(GLSL) [20], a high-level language with a C-based syntax, which207

enables more direct control of graphics pipeline, avoiding the208

3



underwater 
simulated world

camera 
viewport

Sonar operational parameters
opening angle, viewing direction, range

Sonar rendering parameters 

Pulse distance
Near

Far

Echo intensity
90°

0°

Sonar field-of-view
n°

-n°

0°

select rendering area

1

0,5

0 10,5 0,77 x

f(x)

Distance Histogram

Near Far

#

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Data Structure of Sonar Beam for n°

Bin #
Bin Val

Energy Norm.

select beam
select bin

return normalisationreturn
value

calculation

Noise Simulation
3

1,5

0 10,4 x

n(x) Noise Simulation

(i)
(ii)

(iii)

(iv)(v)(vi)

Figure 4: A graphical overview of the imaging sonar simulation process: (i) a virtual camera, specialized as the sonar device, samples the underwater scene; (ii)
three 2D parameters are calculated by shader rendering on GPU: sonar field-of-view, echo intensity and pulse distance; the shader information is split into beam
parts, according to the angle values, and the bin distance and echo intensity are defined by: (iii) distance histogram and (iv) energy normalization, respectively; (v)
the speckle noise is applied to the final sonar data; (vi) and the simulated acoustic data is presented as Rock’s data type.

use of low-level or hardware-specific languages. Shaders can209

describe the characteristics of either a vertex or a fragment (a210

single pixel). Vertex shaders are responsible by transforming211

the vertex position into a screen position by the rasterizer, gen-212

erating texture coordinates for texturing, and lighting the vertex213

to determine each color. The rasterization results, in a set of214

pixels to be processed by fragment shaders, manipulate pixel215

location, depth and alpha values, and interpolated parameters216

from the previous stages, such as colors and textures.217

In our work, the underwater scenes are sampled by a virtual218

camera (frame-by-frame), whose optical axis is aligned with the219

opening angle, the intended viewing direction and the cover-220

age range of the simulated sonar device (see Fig. 4(i)). To221

reproduce the sonar imaging operation by using virtual camera222

frames, three parameters are computed in fragment and vertex223

shaders, during the rendering pipeline. This way, we are able to224

use the precomputed geometric information during the image225

rasterization process on GPU. The three parameters to render226

the sonar device using a virtual camera are illustrated in Fig.227

4(ii), and are described as follows:228

• Pulse distance simulates the time of flight of the acous-229

tic pulse, being calculated by the Euclidean distance be-230

tween the camera center and the object surface;231

• Echo intensity represents the energy reflection of the232

sound wave, calculated from the object surface normal233

regarding the camera;234

• Sonar field-of-view is represented by the camera field-235

of-view in the horizontal direction.236

By default, the shader encodes the raster data in 8-bit color237

channels for red, green, blue and alpha (RGBA). In our simu-238

lator, RGB channels are used to store the echo intensity, pulse239

distance and sonar field-of-view parameters to render the sonar240

from a virtual camera. The echo intensity parameter follows241

a real sonar common representation as 8-bit values. The pulse242

distance is replaced by the native GLSL 32-bit depth buffer to243

avoid precision limitation during the calculation of the distance244

histogram (see Fig. 4(iii)). As the field-of-view angle varies245

from the image center to both side directions, the sonar field-246

of-view is represented by 8-bit values without loss of precision.247

All of these three parameters are normalized into the interval248

[0,1]. For the echo intensity parameter, zero means no energy,249

while one means maximum echo energy. For pulse distance,250

the minimum value denotes a close object, while the maximum251

value represents a far one, limited by the sonar maximum range.252

Every sonar device has a maximum field-of-view; to represent253

this parameter in the rendering pipeline, the zero angle is in the254

center of the image, increasing until it reaches the half value of255

the maximum field-of-view of the simulated sonar device, for256

both sided borders; for example, if a sonar device has 120◦ of257

field-of-view, the zero angle is in the center of the virtual cam-258

era, spanning 60◦ to the left and 60◦ to the right.259

In real-world sensing, surfaces usually present irregulari-260

ties and different reflectance values. To render these surfaces261

in a virtual scene, the echo intensity values can also be defined262

by normal maps (see Fig. 5) and material property informa-263

tion (see Fig. 6). Normal mapping is a rendering technique,264

based on normal perturbation, that is used to simulate wrin-265

kles and dents on the object surface by using RGB textures on266

shaders. This approach consumes less computational resources267

for the same level of detail, compared with the displacement268
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(a) (c) (e)

(b) (d) (f)

Figure 5: Example of shader rendering with normal mapping: A sphere without (a) and with texture (b); respective shader image representations of the spheres in
(c) and (d), where the blue area represents the echo intensity parameter, while the green area means the pulse distance parameter. The final acoustic images are
depicted in (e) and (f). By using normal mapping technique, the textures changes the normal directions, and the sonar image details the appearance of object surface,
like in real world sensing.

mapping technique, because the geometry remains unchanged.269

Since normal maps are built in tangent space, interpolating the270

normal vertex and the texture, tangent, bi-tangent and normal271

(TBN) matrices are computed to convert the normal values into272

the world space. The visual differences of applying normal273

mapping in the actual scenes are illustrated in Figs. 5(a) and274

5(c); in the shader representation, in Figs. 5(e) and 5(b); and275

the final sonar image, in Figs. 5(d) and 5(f). The reflectance276

allows properly describing the intensity received back from ob-277

servable objects in shader processing, according to the material278

properties (for instance, aluminum has more reflectivity than279

wood and plastic). When an object has the reflectivity property280

defined, the reflectance value ρ is passed to the fragment shader281

and processed on GPU. So, the final pixel intensity represents282

the product of surface normal angle by the reflectance value ρ.283

The reflectance affects the shader representation, as depicted in284

Figs. 6(a), 6(b), 6(c) and 6(d)), with a final sonar image shown285

in Figs. 6(e), 6(f), 6(g) and 6(h).286

3.3. Simulating operation of the sonar device287

The sonar rendering parameters are used to compute the288

corresponding acoustic representation. Since the sonar field-289

of-view is radially spaced over the horizontal field-of-view of290

the virtual camera (where all pixels in the same column have291

the same angle), the first step is to split the image into a num-292

ber of beams (beamed sub-images). Each column of the sonar293

field-of-view parameter is related with a respective beam vector,294

according to sonar bearings, as illustrated in Fig. 4(vi). In turn,295

one beam represents one or more columns. Each beamed sub-296

image is converted into bin intensities using the pulse distance297

and the echo intensity parameters. In a real imaging sonar, the298

echo measured back is sampled over time, and the bin number299

is proportional to the sensor range. In other words, the initial300

bins represent the closest distances, while the latest bins repre-301

sent the farthest ones. Therefore a distance histogram (see Fig.302

4(iii)) is computed in order to group the sub-image pixels with303

the respective bins, according to the pulse distance parameter304

and number of bins, and calculate the accumulated intensity in305

each bin.306

Due to the acoustic beam spreading and absorption in the307

water, the final bins have less echo strength than the first ones.308

This is so, because the energy is twice lost in the environment.309

To tackle with that issue, sonar devices use an energy normal-310

ization based on time-varying gain for range dependence com-311

pensation, which spreads losses in the bins. In our simulation312

approach, the accumulated intensity, Ibin, in each bin (see Fig.313
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 6: Examples of different reflectance values, ρ, applied in shader image
representation of the same target, where blue is the echo intensity parameter
and green is the pulse distance parameter: (a) raw image; (b) ρ = 0.35; (c)
ρ = 1.40; and (d) ρ = 2.12. The following acoustic images are presented in (e),
(f), (g) and (h).

4(iv)) is normalized as314

Ibin =

N∑
x=1

1
N
× S (ix) , (1)315

where x is the pixel location, N is the distance histogram value316

(number of pixels) of that bin, S (ix) is a sigmoid function, ix is317

Table 1: Sonar device configurations used on experimental evaluation.

Device # of
beams

# of
bins

Field
of view

Down
tilt

Motor
Step

FLS 256 1000 120◦ x 20◦ 20◦ -
MSIS 1 500 3◦ x 35◦ 0◦ 1.8◦

the echo intensity value of the pixel x, and × defines an element-318

wise multiplication.319

Finally, the sonar image resolution must be big enough to320

contain all information of the bins. For that, the number of bins321

involved is directly proportional to the sonar image resolution.322

3.3.1. Noise model323

Imaging sonar systems are disturbed by a multiplicative noise324

known as speckle, which is caused by coherent processing of325

backscattered signals from multiple distributed targets. This326

effect degrades image quality and visual evaluation. Speckle327

noise results in constructive and destructive interferences, which328

are shown as bright and dark dots in the image. The noisy im-329

age has been expressed, following [21]:330

y(t) = x(t) × n(t) , (2)331

where t is the time instant, y(t) is the noised image, x(t) is the332

free-noise image, n(t) is the speckle noise matrix, and × defines333

an element-wise multiplication.334

This type of noise is well-modeled as a Gaussian distribu-335

tion. The physical explanation is provided by the central limit336

theorem, which states that the sum of many independent and337

identically distributed random variables tends to behave as a338

Gaussian random variable [22]. A Gaussian distribution is de-339

fined by following a non-uniform distribution, skewed towards340

low values, and applied as speckle noise in the simulated sonar341

image (see Fig. 4(v)). This noise simulation is repeated for342

each virtual acoustic frame.343

3.3.2. Integrating sonar device with Rock344

After the imaging sonar simulation process, from the virtual345

underwater scene to the representation of the degraded acous-346

tic sonar data by noise, the resulting sonar data is encapsulated347

as Rock’s sonar data type (see Fig. 4(vi)). This data type is348

provided as I/O port of a Rock’s component, allowing the inter-349

action with other simulated models and applications.350

4. Simulation results and experimental analysis351

To evaluate our simulator, experiments were conducted by352

using a 3D model of an AUV equipped with an MSIS and an353

FLS. Different scenarios were casted and studied, considering354

the sonar device configurations summarized in Table 1. In the355

experimental analysis, as the scene frames are being captured356

by the sonars, the resulting acoustic images are sequentially357

presented, on-the-fly (see Figs. 7 and 8).358
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(a) (d)

(b) (e)

(c) (f)

Figure 7: Forward-looking sonar simulation experiments: (a), (b) and (c) present the virtual underwater trials, while (d), (e) and (f) are the correspondent acoustic
representations of each scenario, respectively.

4.1. Experimental evaluation359

The virtual FLS from AUV was used to insonify the scenes360

from three distinct scenarios. A docking station, in parallel with361

a pipeline on the seabed, composes the first scenario (see Fig.362

7(a)); the target surface is well-defined in the simulated acous-363

tic frame (see Fig. 7(d)), as well as the shadows and speckle364

noise; given that the docking station is metal-made, the tex-365

ture and reflectivity were set such that a higher intensity shape366

was resulted in comparison with the other observable targets.367

The second scenario presents the vehicle in front of a manifold368
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(a) (d)

(b) (e)

(c) (f)

Figure 8: Experiments using mechanical scanning imaging sonar in three different scenarios (a), (b) and (c), and the respective processed simulated frames in
horizontal orientation in (d) and (e), and vertical orientation in (f).

model in a non-uniform seabed (see Fig. 7(b)); the target model369

was insonified to generate the sonar frame from the underwa-370

ter scene (see Fig. 7(e)); the frontal face of the target, as well371

the portion of the seabed and the degraded data by noise, are372

clearly visible in the FLS image; also, a long acoustic shadow373

is formed behind the manifold, occluding part of the scene. The374

third scenario contains a subsea isolation valve (SSIV) struc-375

ture, connected to a pipeline in the bottom (see Fig. 7(c)); the376

simulated acoustic image, depicted in Fig. 7(f), also present377

shadows, material properties and speckle noise effects. Due to378
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Table 2: Processing time to generate forward-looking sonar samples with different parameters.

# of samples # of beams # of bins Field-of-view Average time (ms) Std dev (ms) Frame rate ( f ps)
500 128 500 120◦ x 20◦ 54.7 3.7 18.3
500 128 1000 120◦ x 20◦ 72.3 8.9 13.8
500 256 500 120◦ x 20◦ 198.7 17.1 5.0
500 256 1000 120◦ x 20◦ 218.2 11.9 4.6
500 128 500 90◦ x 15◦ 77.4 11.8 12.9
500 128 1000 90◦ x 15◦ 94.6 10.2 10.6
500 256 500 90◦ x 15◦ 260.8 18.5 3.8
500 256 1000 90◦ x 15◦ 268.7 16.7 3.7

Table 3: Processing time to generate mechanical scanning imaging sonar samples with different parameters.

# of samples # of bins Field-of-view Average time (ms) Std dev (ms) Frame rate ( f ps)
500 500 3◦ x 35◦ 8.8 0.7 113.4
500 1000 3◦ x 35◦ 34.5 1.6 29.0
500 500 2◦ x 20◦ 10.3 0.6 96.7
500 1000 2◦ x 20◦ 41.7 3.7 24.0

sensor configuration and robot position, the initial bins usually379

present a blind region in the three simulated scenes, caused by380

absence of objects at lower ranges, similar to real sonar images.381

It is noteworthy that the brightness of seafloor decreases as it382

is farther from sonar, because of the normal orientation of the383

surface.384

The MSIS was also simulated in three different experiments.385

The robot in a big textured tank composes the first scene (see386

Fig. 8(a)); similar to the first scenario of FLS experiment, the387

reflectivity and texture were set to the target; the rotation of the388

sonar head position, by a complete 360◦ scanning, produced389

the acoustic frame of tank walls (see Fig. 8(d)). The second390

scene involves the vehicle’s movement during the data acqui-391

sition process; the scene contains a grid around the AUV (see392

Fig. 8(b)), captured by a front MSIS mounted horizontally; this393

trial induces a distortion in the final acoustic frame, because the394

relative sensor position with respect to the surrounding object395

changes, as the sonar image is being built (see Fig. 8(e)); in396

this case, the robot rotates 20◦ left during the scanning. The397

last scene presents the AUV over oil and gas structures on the398

sea bottom (see Fig. 8(c)); using an MSIS located in the back399

of the AUV with a vertical orientation, the scene was scanned400

to produce the acoustic visualization; as illustrated in Fig. 8(f),401

object surfaces present clear definition in the slice scanning of402

the sea-floor.403

All the experimental scenarios was defined in order to pro-404

vide enough variability of specific phenomena usually found in405

real sonar images, such as acoustic shadows, noise interference,406

surface irregularities and properties, distortion during the acqui-407

sition process and changes of acoustic intensities. However, the408

speckle noise application is restricted to regions with acoustic409

intensity, as shown in Figs. 7(f) and 8(d). This fact is due to our410

sonar model be multiplicative (defined in Eq. 2). In real sonar411

images, the noise also granulates the shadows and blind regions.412

The sonar simulator can be improved by inserting an additive413

noise to our model. The impact of incorporating additive noise414

on the image is more severe than that of multiplicative, and we415

decided to collect more data before including a specific addi-416

tive noise in our simulator, at this moment. A second feature417

missing in our simulated acoustic images are the ghost effects418

caused by reverberation. This lacking part can be addressed by419

implementation of a multi-path propagation model [23], where420

the signal propagates along several different paths, resulting in421

fading and reverberation effects. Simulating the multi-path re-422

flection is computationally costly, thus we need more time to423

model and include the reverberation phenomenon, considering424

the real-time constraints.425

4.2. Computational time426

Performance evaluation of the simulator was assessed by427

considering the suitability to run real-time applications. The428

experiments were performed on a Intel Core i7 3540M proces-429

sor, running at 3 GHz with 16GB DDR3 RAM memory and430

NVIDIA NVS 5200M video card, with Ubuntu 16.04 64 bits431

operating system. The elapsed time of each sonar data is stored432

to compute the average time, standard deviation and frame rate433

metrics, after 500 iterations. The results found is summarized in434

Tables 2 and 3. After changing the sonar rendering parameters,435

such as number of bins, number of beams and field-of-view,436

the proposed approach generated the sonar samples with a high437

frame rate, for both sonar types, in comparison to real-world438

sonars. For instance, the Tritech Gemini 720i, a real forward-439

looking sonar sensor, with a field-of-view of 120◦ by 20◦ and440

256 beams, presents a maximum update rate of 15 frames per441

second; so, the obtained results allow the use of the sonar sim-442

ulator for real-time applications. Also, the MSIS produced data443
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(a) (b)

(c) (d)

(e) (f)

Figure 9: Target objects used in real and simulated experiments, insonified by Tritech Gemini 720i (FLS) and Tritech Micron DST (MSIS) sensors: (a) a subsea
isolation valve (SSIV) and (b) a big tank. Real-world sonar and virtual images generated by our system: (c) sonar image of the SSIV captured with the FLS device
and (e) the simulated image; (d) tank walls captured by the MSIS device and (f) the simulated representation.

in the simulator is able to complete a 360◦ scan sufficiently fast444

in comparison with a real sonar as Tritech Micron DST. For the445

FLS device, these rates are superior to the rates lists by De-446

Marco et al [4] (330ms) and Saç et al [3] (2.5min). For MSIS447

type, to the best of our knowledge, there is no previous work448

for comparison.449

According to previous results, since the number of bins is450

directly proportional to sonar image resolution, we can con-451

10



clude that the number of bins used affects the computational452

time; when the number of bins increases, the simulator will453

have a bigger scene frame to compute and to generate the sonar454

data.455

4.3. Quantitative evaluation of the simulated sonar image456

Numerically assessing the performance of a sonar simulator457

is a non-trivial task. As sonar simulators are expected to work458

as trustworthy environment to avoid in-field experiments, the459

goal of quantitative evaluation should be to demonstrate that460

the real-world sonar image can be aligned with the synthetic461

one. Just two [3, 4] out of the seven works analyzed in Section462

1 perform quantitative evaluation of the proposed simulators,463

although restricted only to computational time assessment.464

Similarity should be carried out by considering a real-world465

and a virtual scene, both insonified by real and simulated sonar466

devices, respectively, at the same conditions. In other words, it467

means that we have to guarantee the same pose of the AUV in468

the real and virtual scenarios, which, in turn, should present the469

same elements being insonified; measuring the alignment of the470

images (real and simulated) works as comparing how much the471

simulated sonar image is similar to the real one with respect to472

pixel intensity and location, and image components.473

The process of measuring the image quality can be per-474

formed by a set of metrics, among which, five were chosen to be475

used here: Mean-squared error (MSE), peak signal-to-noise ra-476

tio (PSNR), structural similarity index measure (SSIM), multi-477

scale structural similarity index measure (MS-SSIM), and scale478

invariant feature transform (SIFT). MSE calculates the cumula-479

tive square error between the reference and estimated images;480

values closer to zero are better. PSNR measures the peak error,481

expressed in terms of logarithmic scale; by handling with 8-bit482

grayscale images, the closer PSNR is to 99dB, the greater is483

similarity between the two images. SSIM evaluates the similar-484

ity of two images by performing a corresponding sliding win-485

dow in the images; the more similar the images are, the average486

of window differences is closer to one. MS-SSIM is calculated487

as a weighted mean of SSIM rates, obtained for different scales488

of the reference and estimated images; as SSIM, the greater the489

values, the better is the results. SIFT compares the extracted in-490

teresting keypoints for both images; while the distance between491

the two set of descriptors over the keypoints in the two images492

approaches to zero, the greater the similarity degree. Here, all493

the metrics are normalized between zero and one range.494

To evaluate the quality of the sonar images generated by our495

simulator, two real-world scenarios were modeled containing496

two target objects, which were insonified by an FLS and an497

MSIS: A SSIV (see Fig. 9(a)) submerged at Todos os Santos498

Bay, Salvador, Brazil; and the tank walls at DFKI Maritime499

Exploration Hall (see Fig. 9(b)). Figs. 9(c) and 9(e) are the500

results of the real and simulated sonar images of the SSIV, while501

Figs. 9(d) and 9(f)) illustrate the real and simulated acoustic502

representations of the tank walls. The real sonar images were503

acquired using the FlatFish AUV [24]. After modeling the two504

scenarios, the five metrics were applied in order to compute the505

degree of similarity between each pair of sonar images. Table 4506

summarizes the results.507

Table 4: Similarity evaluation results between real-live and simulated sonar
images.

Scene MSE PSNR SSIM MS-SSIM SIFT

SSIV
(Figs. 9(c),

9(e))
0.010 0.463 0.361 0.654 0.042

Tank
(Figs. 9(d),

9(f))
0.004 0.489 0.834 0.895 0.288

Since the viewpoints in the real and the virtual scenes are508

approximated, the simulated images did not suffer from sig-509

nificant changes in the insonified objects, as explained in Sec-510

tion 2.1. However, the acoustic details and effects missing in511

the simulated images, such as reverberation and additive noise,512

probably influenced the results of PSNR, which did not even513

reach 50%, for the similarity of two scenes. SSIM and MS-514

SSIM take into account visual attributes of the images, such as515

luminance, contrast and structural terms, rather than pixel lo-516

cation; since the tank scene is an object simpler than the SSIV,517

in terms of insonified regions, and the FLS is more sensitive518

to the additive noise than MSIS, the results of the SSIM-based519

metrics presented higher similarity for MSIS images than FLS520

ones. SIFT has a limited performance when directly applied in521

images corrupted by multiplicative speckle noise [25]; this fact522

explains why the SIFT presented the worst similarity results for523

both sonar devices. MSE evaluates the two images in general,524

by considering the position of the elements in the scene; also,525

the two scenes were insonified by sonars presenting approxi-526

mately the same poses, as well as, the simulator depicts the527

sonar image with echo intensity close to the real-world sonar528

image; these situations can explain why MSE was the metric529

with the best results, although a clear visual difference can still530

be observed in these latter two sonar images, due to the lack of531

the additive noise.532

5. Conclusion and future work533

A GPU-based simulator for imaging sonar was proposed534

here. The system is able to reproduce the operation mode of535

two different types of sonar devices (FLS and MSIS) in real-536

time. The real sonar image singularities, such as multiplicative537

noise, surface properties and acoustic shadows are addressed,538

and represented in the simulated acoustic images. The result-539

ing acoustic representation of shadows are so accurate as the540

insonified objects. Considering the qualitative and quantitative541

results, the sonar simulator can be used by feature detection542

algorithms, based on corners, lines and shapes. Also, the com-543

putational time to build one sonar frame was calculated using544

different device settings. The vertex and fragment processing545

during the underwater scene rendering accelerates the simu-546

lated sonar image, providing an average time close to or better547

than real-world imaging devices. These results allow the use of548
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this imaging sonar simulator in real-time applications, such as549

obstacle detection and avoidance, and object tracking. We are550

working now on a way to add the reverberation effect to perform551

a more close-to-real sensing, without significantly affecting the552

computational time. We are also working on how to include an553

additive noise in the simulation of the acoustic images. We ex-554

pect that the addition of these two effects in the simulated sonar555

model will certainly improve the quantitative results, as well as,556

the visual perception of the resulting simulated images.557
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