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Abstract

This paper proposes a novel deep learning architecture
for person re-identification. The proposed network is based
on a coarse-to-fine learning (CFL) approach, attempting to
acquire a generic-to-specific knowledge throughout a trans-
fer learning process. The core of the method relies on a hy-
brid network composed of a convolutional neural network
and a deep belief network denoising autoenconder. This hy-
brid network is in charge of extracting features invariant
to illumination varying, certain image deformations, hori-
zontal mirroring and image blurring, and is embedded in
the CFL architecture. The proposed network achieved the
best results when compared with other 12 state-of-the-arts
methods, over the VIPeR and i-LIDS data sets.

1. Introduction
Person re-identification is one of the most challenging

task in Computer Vision. It consists in identifying a per-
son across a database of images, given a target image or
video of that person. Person re-identification systems usu-
ally cope with inherent characteristics of the environment,
such as unstructured scenes, human pose variation, lighting
changing, low-resolution images, just to cite a few. A com-
prehensive review on person re-identification can be found
in [4].

In the last decade, several methods for person re-
identification have been proposed. Features with the goal of
globally representing the disparities or similarities between
two images can be found in [3], [11], [12] and [14]. In
the same way, new distance metrics were proposed with the
goal of learning similarity scores considering two person
images [20], [9], [21], [7], [22]. In [16], a new discrimina-
tive model based on a ranked-SVM was introduced to solve
the problem without labeling information of persons in the
target domain cameras.

In recent years, deep learning has been adopted to solve
several Computer Vision problems, such as pedestrian de-
tection [23], face identification [24], feature generation [6],
feature extraction [17] and face parsing [15]. This approach

aims at learning, at the same time, some levels of abstrac-
tion in image representation, classifier parameters and/or
distance metric functions. A deep network can be pre-
viously trained in an unsupervised fashion by a symmet-
ric network, called autoencoder, in order to create a com-
pressed representation of its input and/or to address the lack
of sufficient data to learn. Some works that use an autoen-
coder network for different tasks can be found: In [18], a
multi-modal deep belief network (DBN) was proposed to
learn a sharing representation of a set of videos and their as-
sociated audio information; in [24], a normalized represen-
tation of face images, learned by a convolutional deep au-
toencoder, was created with the goal of generating face fea-
tures invariant to pose and illumination changing; in [19], a
denoising autoencoder (DAE) was introduced to learn use-
ful image representation; in [10], a deep autoencoder was
proposed to retrieve context-based image. In the context of
person re-identification, some deep network architectures
have been proposed [22], [2], [13], [5], achieving state-of-
the-art results on almost all evaluated data sets.

1.1. Contributions

Our work brings two main contributions: (i) A machine
transfer learning approach motivated by the human skill of
obtaining coarse-to-fine knowledge; and (ii) a novel hybrid
deep network topology. The basic idea of the first con-
tribution is to train a deep network to learn specific con-
cepts, having previously learned a more generic knowl-
edge. The goal of the second contribution relies on merging
a set of convolutional neural networks (CNN) and a pre-
trained DBN-DAE into a network able to learn image local
features (CNN) and noise-invariant global features (DBN-
DAE). Our proposed approach was compared with other 12
state-of-the-art methods [22], [11], [3], [16], [2], [12], [9],
[14], [21], [5], [20], [7] over VIPeR [8] and i-LIDS [1] data
sets, presenting the best performance.

2. A coarse-to-fine deep network architecture
for person re-identification

Usually, if a human being desires to identify a person,
first that one should know what a person is (usually learned
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(a) (b)

Figure 1: (a) Outline of our proposed network. The ”Net” box contains a network composed of three CNNs (each one for
each human body part - head, torso and legs) and a pre-trained DBN-DAE, as shown in (b).

Figure 2: Noise filters on samples of VIPeR data set. From
left to right: Original image, randomly changed brightness,
horizontal mirroring, blurring and image distortion.

in infancy), discriminate gender (male/female), and then
compare each one of the parts of a person with his/her
own mental data base of person characteristics. The goal
of our proposed network is to follow this rationale to have
a coarse-to-fine knowledge acquisition with respect to the
structure of a person to be identified.

Figure 1a depicts the outline of our proposed architec-
ture. The ”Net” box denotes a network, which is a hybrid
of a CNN and a DBN-DAE (see Fig. 1b). In the hybrid ar-
chitecture (Sec. 2.1), while the CNN extracts local features
from the person images, a pre-trained DBN-DAE (Sec. 2.2)
extracts global features, invariant to certain types of noises,
such as randomly changed brightness, horizontal mirroring,
blurring and small image distortions, according to the ex-

amples of Fig. 2. Although it would be possible to have
all CNNs or all DBN-DAEs in the hybrid of Fig. 1b, ex-
periments show that a DBN-DAE along with a CNN form
the best configuration (Sec. 3). After having the DBN-DAE
trained, the overall network is now able to be trained, in-
cluding the CNN of the hybrid network. The learning is
transferred (Sec. 2.3) from the person (step 1) to the gender
network (step 2), and then lately to the Siamese network
(step 3) in order to accomplish the final person identifica-
tion by means of a two identical networks (see Fig. 1a). In
turn, the Siamese (Sec. 2.4) learns which pairs of images
belong to the same or different persons.

2.1. Hybrid Network

Our hybrid network has four sub-nets: one for each
body part (head, torso and legs) and a full-body sub-net
(see Fig. 1b). Each one of the three body-part sub-nets
is a CNN with two convolutional layers (C1 and C3), two
max-pooling layers (S2 and S4), and one full-connected
layer (F5). This latter one has 500 units shared with the
three body-part sub-nets. The full-body sub-net is com-
posed of the pre-trained DBN-DAE, which provides an 500-
dimensional feature vector in its output. At the end, the hy-
brid network output is given by F5 layer concatenated with
the output of the pre-trained DBN-DAE, forming a 1000-
dimensional feature vector.

2.2. DBN-DAE

An autoencoder is a symmetric network whose output is
equal to the input. The main goal is to learn a compact rep-
resentation of the input. There are two types of layers in that
network: Encode and decode. A trained autoencoder com-
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(a) Steps of the DBN-DAE training (b) DBN-DAE fine-tuning with the flat noisy image
layer

Figure 3: DBN-DAE topology and training steps. In (a), a cascade of layer-wise Restricted Boltzmann Machines (RBM)
training is performed in four steps. In the first step, the input layer of the first RBM is the flat version of an original image;
when the first RBM is trained, a second RBM is stacked on the top of the first one; the output of the first RBM becomes the
input layer of the second one. In the second step, while the new RBM is trained, the weights of the first one is fine-tuning.
In the same way, the third and fourth steps follow the first and second ones. In (b), a fully symmetric DBN-DAE with all
pre-trained RBM is trained to minimize a cross-entropy error between the output of the network and the flat noisy image.

putes a compact representation from its input by the encode
layers, and recover a version of its input by the decode ones.
A DAE attempts to create a representation robust to certain
types of noises (embedded in the input images), placing a
noisy input image on the output of the network.

The goal of the proposed DAE was to create a com-
pressed representation of an image person, invariant to some
conditions of illumination, blurring, horizontal mirroring
and small image distortions (see Fig. 2). The training set of
the DBN-DAE was composed of a set of input and output
image pairs. After applying noise filters for each image of
VIPeR and i-LIDS data sets, the total number of image pairs
to feed the DBN-DAE was 91008 and 32256, respectively.
This is so, once the training set was formed by matching
one image against all the others, for each image person (also
considering pairs formed by the same images).

The training process was the same as in [15], but in a
single modality. The topology of our DBN-DAE is struc-
tured by four pre-trained Restricted Boltzmann Machines
(RBM) layers. According to Fig. 3, v and hi, with i = 1 to
4, are the visible and hidden units, respectively. v is the
flat version of the original image Io.

∼
v is the output of

the network, while l is the flat version of the noisy image
IN . The weights between the layers are represented by Wi

vectors. zi and ui are the offset vectors for input and hid-
den units, respectively. There are two steps to reach a fully
trained DBN: (i) A stacked layer-wise training for each one
of the four RBM, as shown in Fig. 3a, and (ii) a DBN fine-
tuning to minimize the cross-entropy error between

∼
v and

l, as shown in Fig. 3b. The weights of the encode layers

is initialized by the weights of the pre-trained RBMs. The
weights of the decode layers is the transpose of the weights
of the encode ones. The number of DBN-DAE units for the
input and output layers are 6912 (the output layer is the flat
version of the 48×48 re-sized image with the 3 RGB chan-
nels). The number of hidden units are 4000 in h1, 2000 in
h2, 1000 in h3 and 500 in h4. Each RBM is trained to max-
imize the product of the probability of a given training set
T , given by

argmax
W,z,u

∏
v∈T

P (v) , (1)

where

P (v) =
1

Z

∑
h

e−E(v,h) , (2)

where Z is a normalizing constant to ensure the probabil-
ity distribution sums to 1. The energy function E of the
equation 2 is given by

E(v,h) = −uTv − zTh− vTWh . (3)

The conditional probabilities of P (h|v) and P (v|h) are
modeled by a product of Bernoulli distributions, given by

P (hi = 1|v) = σ(ui +Wiv) (4)

and
P (vj = 1|h) = σ(zj +WT

j h) , (5)

where σ(.) is a sigmoid function.

3
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(a) CNN and DBN-
DAE (VIPeR)

(b) All DBN-DAEs
(VIPeR)

(c) All CNNs (VIPeR)

(d) CNN and DBN-
DAE (i-LIDS)

(e) All DBN-DAEs (i-
LIDS)

(f) All CNNs (i-LIDS)

Figure 4: Comparative evaluation of different configura-
tions of our hybrid deep network. Black, yellow, blue, red
and green bars depict the network performance: With full
CFL, FCL, with only knowledge about person, with only
knowledge about gender and without CFL, respectively.

The encode layers of the pre-trained DBN-DAE is cou-
pled to CNN to form the hybrid network (see Fig. 1b). The
last encode layer corresponds to the global features of the
image person that will be tuning in the training phase of the
Siamese network.

2.3. Coarse-to-fine transfer learning

Before the Siamese network training, the coarse-to-fine
transfer learning (CFL) approach takes place by means of a
cascade of transfer learning (person → gender → identifi-
cation). The goal of the transfer learning is to initialize the
parameters of a network by using those pre-trained parame-
ters of another network; this latter one trained in a different
problem domain. Particularly, as the problem domains in
step 1 and 2 of Fig. 1a reside in a binary classification, a
binary layer in the output of the networks was added, and
the networks were trained by a backpropagation algorithm
with a softmax loss function. The learning rate in the train-
ing process in a step is decreased by 10 times regarding to
the previous step. This is so, since the network of a higher
step is tuning the parameters already learned in the previous
one.

2.4. Siamese Network

Usually, the outputs of the two networks inside a
Siamese topology are connected by one connection func-
tion and a cost function. The connection function evaluates

(a) Results on VIPeR dataset

(b) Results on i-LIDS dataset

Figure 5: Cumulative curves of the methods over VIPeR
and i-LIDS datasets

the relationship between the two network outputs, while the
cost function converts this relationship into a cost. A sam-
ple in the supervised training phase of the Siamese is com-
posed of a pair of images and a label, y. In our Siamese
network, the two networks were connected by a contrastive
connection function, which ultimately measures the simi-
larity between the two network outputs and the cost, at the
same time. A contrastive function L is defined as

L(X1(φ), X2(φ), y) =(1− y)1
2
D2+

y
1

2
(max(0,m−D))2 ,

(6)

where D = ‖X1(φ) − X2(φ)‖2, and X1(φ) and X2(φ)
denote the output of the Nets (step 3 of Fig. 1a), m repre-
sents a constant (in our case, equal to 1), and φ represents
the network parameters. The Siamese is trained to find the
values of φ that minimize L.

Siamese training was performed using the stochastic gra-
dient descend with mini-batch size equals to 100 and 30000
iterations. The learning rate of the pre-trained DBN-DAE
was set to 0.001, while the CNN learning was set to 0.01.

The contrastive function is not used in the prediction
phase and the output of the two networks are evaluated by
an Euclidean distance. The smaller the distance, the higher
the similarity between the two persons in the input of the

4
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Table 1: Comparative analysis on VIPeR data set. Each value corresponds to a hit rate score of a method in a specific rank
(rank 14 instead of 15, for IDLA).

aaaaaaaaa
Method

Rank
1 5 10 15* 20 25 30 50

Our 0.4494 0.7500 0.8576 0.9082 0.9399 0.9589 0.9715 0.9968
improved DML [22] 0.3440 0.6215 0.7589 0.8256 0.8722 0.8965 0.9228 0.9652
SCNR [11] 0.2392 0.4557 0.5623 0.6266 0.6873 0.7278 0.7880 0.8671
SDALF [3] 0.1987 0.3889 0.4937 0.5759 0.6573 0.7089 - -
DTR [16] 0.1345 - 0.5158 - 0.7468 - - 0.9272
IDLA [2] 0.3481 0.6424 0.7627 0.8038 - - - -
LAFT [12] 0.2960 - 0.6931 - - 0.8870 - 0.9680
RPML [9] 0.2700 - 0.6900 - 0.8300 - - 0.9500
LOMO+XQDA [14] 0.4000 - 0.8051 - - 0.9108 - -
KLFDA [21] 0.3233 0.6578 0.7972 0.8699 0.9095 0.9346 - -

Table 2: Comparative analysis over i-LIDS data set. Each value corresponds to a hit rate score of a method in a specific rank.

aaaaaaaaa
Method

Rank
1 5 10 15 20 25 30

our 0.5333 0.7000 0.7833 0.8333 0.8832 0.9333 0.9500
DFLRDC [5] 0.5210 0.6820 0.7800 0.8360 0.8880 - 0.9500
LMNN [20] 0.2800 0.5380 0.6610 0.7550 0.8230 - 0.9100
MCC [7] 0.3130 0.5930 0.7560 0.8400 0.8830 - 0.9500
KLFDA [21] 0.3802 0.6512 0.7738 0.8440 0.8919 0.9267 -
SDALF [3] 0.2880 0.4778 0.5696 0.6424 0.6804 0.7405 -

Siamese. A combination of 4 images (original plus noisy
produced ones), 2 by 2, has generated 16 distance scores
from each pair of persons evaluated by the Siamese. The
final score was computed by the maximum value of the 16
ones.

3. Experimental analysis
The performance of the proposed network was evaluated

over VIPeR and i-LIDS data sets. VIPeR is composed of
632 pedestrian image pairs taken from two non-overlapping
cameras. i-LIDS data set contains 476 images of 119 pedes-
trians taken from two non-overlapping cameras. Here the
experiments were repeated 10 times, considering a random
selection of 316 persons on VIPeR, for training and testing,
and 60 persons for training and 59 for testing on i-LIDS.
Training and testing sets were disjunct with regard to the
person image.

A first step in the performance assessment of the pro-
posed method was to define the best hybrid architecture,
which is lately used inside the coarse-to-fine deep network.
Three types of hybrid network was experimentally evalu-
ated, considering a general structure depicted in Fig. 1b,
but varying the type of network inside: (i) all CNNs, (ii)
all DBN-DAEs and (iii) CNN and DBN-DAE. The second

step was to assess the performance of the overall network
depicted in Fig. 1a by varying its architecture, according
to: (i) person transfer learning (Person CFL); (ii) fine-to-
coarse learning (FCL) – training gender before person; (iii)
only person transfer learning (Person CFL); (iv) only gen-
der transfer learning (Gender CFL); (iii) person and gender
transfer learning (all CFL); and, (iv) with only the Siamese
deep network (without CFL). Figure 5 shows that the use
of the DBN-DAE with a full CFL increases the hit rate, in
the top rank, of our model by 11%, over VIPeR, and 13%
over i-LIDS, in comparison with the single CNN Siamese
deep network without CFL. The use of the hybrid topology,
instead of the network with only CNNs, increases the top
rank performance of our model by at least 5% over both
data sets. The network pre-trained by CFL increases the hit
rate of our model, in the top rank performance, by at least
4%, in comparison with the network without CFL.

After choosing the best overall architecture (as in Fig.
1a), the performance of our proposed method was compared
with 12 state-of-the-art methods: Improved Deep Metric
Learning (DML) [22], Semantic Color Names and Rank-
boost (SCNR) [11], Symmetric-driven accumulation of lo-
cal features (SDALF) [3], Domain Transfer support vector
Ranking (DTR) [16], Improved Deep Learning Architec-
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ture (IDLA) [2], Locally Aligned Feature Transformation
(LAFT) [12], Relaxed Pairwise Learned Metric (RPLM)
[9], Local Maximal Occurrence Representation and Met-
ric Learning (LOMO+XQDA) [14], Kernel-based Metric
Learning (KFLDA) [21], Deep Feature Learning with Rel-
ative Distance Comparison (DFLRDC) [5], Large Margin
Nearest Neighbor (LMNN) [20] and Metric Learning by
Collapsing Classes (MCC) [7]. Figure 5 shows that, in gen-
eral, our proposed network achieved the best performance
on both data sets. In Tables 1 and 2, after sampling some
ranks, it is noteworthy that our method shows a slightly
lower performance than MCC [7] and DFLRDC [5], at top
rank 15, and than DFLRDC [5] and KFLDA [21], at top
rank 20, over i-LIDS.

4. Conclusion
A novel coarse-to-fine deep network architecture was

proposed here. The proposed network relies on acquir-
ing the necessary knowledge to identify a person, from a
generic-to-specific information, by transferring the learning
achieved in each step of the training. The proposed architec-
ture presented the best performance against 12 other state-
of-the-art methods. For future work, we are investigating
different ways of transfer learning.
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