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Abstract— Road segmentation plays an important role in
many computer vision applications, either for in-vehicle percep-
tion or traffic surveillance. In camera-equipped vehicles, road
detection methods are being developed for advanced driver
assistance, lane departure, and aerial incident detection, just
to cite a few. In traffic surveillance, segmenting road infor-
mation brings special benefits: to automatically wrap regions
of traffic analysis (consequently, speeding up flow analysis in
videos), to help with the detection of driving violations (to
improve contextual information in videos of traffic), and so
forth. Methods and techniques can be used interchangeably
for both types of application. Particularly, we are interested
in segmenting road regions from the remaining of an image,
aiming to support traffic flow analysis tasks. In our proposed
method, road segmentation relies on a superpixel detection
based on a novel edge density estimation method; in each
superpixel, priors are extracted from features of gray-amount,
texture homogeneity, traffic motion and horizon line. A feature
vector with all those priors feeds a support vector machine
classifier, which ultimately takes the superpixel-wise decision
of being a road or not. A dataset of challenging scenes was
gathered from traffic video surveillance cameras, in our city,
to demonstrate the effectiveness of the method.

I. INTRODUCTION

Road segmentation is one of those tasks which may
provide important information for applications of in-vehicle
perception [1], [8], [3] or traffic surveillance [9], [4], [5]. In
the former, advanced driver assistance, lane departure and
aerial incident detection can be cited as examples; in the
latter, automatically region segmentation in urban scenes to
speed up flow analysis, detection of driving violations and
contextual information to improve object detection are also
some examples. Methods and techniques for road segmen-
tation can be applied in both fields, although for different
purposes.

In traffic analysis from surveillance camera, where we
are particularly interested in, the work of Melo et al. [5]
exploits vehicle motion trajectory to detect highway lanes.
To estimate the trajectory, a merge-and-split algorithm is
performed by means of a Kalman filter followed by a random
sample consensus (RANSAC) in order to avoid the bias
due to vehicle lane changes. Highway lanes are categorized
as entry, exit, primary or secondary, after the use of non-
metric distance functions and a simple directional indicator.
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In [8], Shin et al. classify vehicle by means of a road
lane detection method. For this latter, a Hough transform
is applied over a Sobel edge detector. In fact, to detect
vehicles on the road, a 3D object model was fitted over
the objects in the image, and the lane detector helped in
this process. Another example of lane detection can be
found in [7], where Lai et al. extract lane information by
using orientation and length features of lane markings and
curb structures. Those features are obtained in a 3D space,
after a proper camera calibration. A system for vehicle
classification that explores lane detection can be found in
[4], where Hsieh et al. rely on this information in order to
remove shadow from a line-based method. Specifically, to
actually segment the road, in [9], Helala et al. detect road
boundary by a superpixel extraction with a confidence score
assigned for each cluster (superpixel). After ranking each
high confident cluster, road boundary is defined. Chung et
al [10] proposes a four-step method to segment a road by
background subtraction, foreground extraction, background
pasting and road localization.

Our aim is to segment road regions from the remaining
parts of an image in order to support posterior traffic flow
classification. Road segmentation in this context will aid
the final system to narrow down the effective image region
to be analysed, being interesting that it runs on-the-fly in
order to be applicable in online situations. The outline of
the proposed system is depicted in Fig. 1. Differently from
the aforementioned methods, ours is a learning-driven one,
based on a robust superpixel segmentation and extraction
of multiple priors, which are synergistically combined road
cues. This concept turns the method adaptive even in case
of lack of vehicle motion, which is a type of feature very
exploited in many methods [4], [5]. Our proposed method
starts with a fast background modelling technique based on
a median filter. This is intended to subtract the background
in order to proceed with the rest of the method. After N

frames, the resulting background model is segmented by an
edge-density-based superpixel detection, where actually each
feature will be computed, taking into consideration a gray
level amount computation, a texture homogeneity extraction,
horizon line detection and motion estimation. Finally, a
vector comprised of all those feature feeds a support vector
machine (SVM) to make the decision for each superpixel to
belong to a road or not. During the training of the classifier,
several examples were given considering the presence of all
or some of the priors, yielding the proposed system to be
robust to a large spectrum of situations.

Still considering video surveillance, road segmentation in
urban scenes presents additional challenges in contrast to
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Fig. 1. System outline. The proposed system is comprised of two specific modules: superpixel detection, by a novel method of edge density estimation,
and classification of each superpixel, clustering the similar ones. On each superpixel, features of color (gray amount), texture homogeneity (also, edge
density analysis) and motion estimation (based on background subtraction) are extracted, composing a feature vector to feed an SVM. On bottom right,
the legend indicates the meaning for each frame in the framework: input video, temporal analysis with pixel accumulation in a set of frames, an actual
action and the outputs (top-down).

highway scenes: (i) it shows more clutter scenes, with the
presence of many vehicles stopped in the roads; (ii) roads
do not have only parallel lines which meet in infinite; and
(iii) pedestrians in the scenes can turn the problem more
complicated since they can also make part of the motion
analysis, causing the method to make errors in the boundaries
of the road. By extracting a set of cues, which define the
object road under many circumstances, we are still able to
treat the problem more effectively.

The rest of this paper describes in details the proposed
method as well as results over a dataset gathered from a set
of video surveillance cameras installed in our city (Salvador).

II. EDGE-BASED BACKGROUND MODELLING

In traffic surveillance images, the road is the main part
of the background. Therefore road segmentation methods
usually start with a model of the background relatively
clean (without foreground). From videos, the more common
way of yielding that is by means of background subtraction
(BS), which aims at separating foreground objects from the
background. BS strategies range from simple inter-frames
difference to more complex methods, like Mixture of Gaus-
sians (MoG), which tries to model the background pixels by
a mixture of normal distributions (please refer to [18] for a
survey).

Since the focus of our algorithm is to provide a traffic
analyser system with road information, low complexity is

desirable to release computational resources for the traffic
analyser module. To cope with this requirement, we have
used a simple median filtering as a BS technique. The median
filtering consists in modelling the background pixels by a
median of their intensity along a frame sequence. However,
since it is necessary to accumulate the history of the pixel
intensities to calculate the median, it is memory bound. In
our work, to overcome the memory requirement problem, we
use an approximated median value as proposed in [17]:

BGk =

{
BG(k−1) + 1, if FGk > 0 ,
BG(k−1) − 1, if FGk < 0

(1)

where BG and FG denote background and foreground,
FGk = Framek −BG(k−1), and k = 1, 2, ...N frames.

The method in [17] presents a drawback: if the foreground
objects are moving slowly or are stopped in respect to the
road, pixels in foreground gradually appears as background.
To tackle this problem, we have adopted the following
strategy: for each RGB background updated by the median
filter, a Canny edge detector is applied and the edges are
accumulated along a frame sequence. At the end, after
normalizing the edge accumulator by the frame number, we
then select the more stable edges in that sequence, i.e., edges
that remain in most of the frames. Fig. 2 shows the effect
of selecting stable edges for the background. The idea is
that background objects generate more stable edges than
foreground ones, that way yielding a more representative



Fig. 2. Background Modelling. In (a), an RGB background update provided
by the median filter; (b) shows the edges accumulated along a sequence
- the more the edges are considered stable, the more they appear in the
final result; and (c) shows the resulting edge-based background model after
selecting the more stable edges.

(edge-based) model. This is specially convenient for our
algorithm since our superpixel detection method is fed with
only an image with edges, as will be shown in the next
section.

III. SUPERPIXEL DETECTION BY EDGE DENSITY
ESTIMATION

Superpixel detection is based on image oversegmention.
The rationale relies on a way of subdivide the image in a
number of regions significantly smaller than than the number
of pixels, in order to reduce the complexity of subsequent
image processing steps. It is reached by grouping locally
similar pixels in more meaningful segments, which can
be used in feature extraction and classification, instead of
performing these tasks in the pixel itself (refer to [11], [14]
for methods in this field).

Methods to detect superpixels rely mostly on pixel-wise
color distance [15] or graph-based [16] techniques, turn-
ing them computationally expensive to be applied on-the-
fly. Furthermore, some of these techniques do not provide
satisfactory edge adherence, which is quite critical for road
segmentation (an example of a method that deals with edge
adherence in a relatively fast way can be found in [11]).

In order to fulfil the aforementioned requirements (fast
computation for online applications and high edge adher-
ence), we propose a new superpixel detection. Focusing
on the processing time, our method is based on just three
usually fast tasks: an edge detection followed by a linear
filtering and a morphological operation. For the former,
a Canny detector was used as described in the previous
section, where from an RGB frame sequence (Fig. 3 (a)) an
edge-based background model is produced (Fig. 3 (b)). The
motivation to use edges as basis for superpixels is because

they essentially represent strong dissimilarities in the image,
delimiting most homogeneous regions, which ultimately are
good candidates to be superpixels. However, in most of the
cases, the direct use of the edges is not practical due to
discontinuities that often occur along them, merging different
regions erroneously. To address this issue, we perform a
spatial linear filtering in the edge image by means of the
following filter, so-called edge density

ED =
1

N

N∑
i=1

pi (2)

where the edge density ED is a simple arithmetic median
calculated in the neighborhood N of the pixels pi.

The idea behind this filter is that although edge discon-
tinuities are unset pixels in a binary image, its local edge
density is not null. This way, by applying a suitable threshold
over the filter kernel, we can expand the edges in order to
reconstruct their broken regions covered by the filter, as can
be seen in Fig. 3 (c). In our work we have used a threshold
equal to 0.1 in a 9×9 filter kernel with stride of 1 pixel. On
the other hand, the expanded edges lose the adherence with
the real contour of the objects in the original image. To cope
with this situation, a thinning morphological operation is
then applied, iteratively refining the borders, however without
generating new discontinuities. Since the edges are expanded
by N-1, and the thinning operation performs symmetrically
in both sides of it, thus (N-1)/2 iterations are necessary. Fig.
3 (d) shows the refined edges after the thinning process.

Finally, to reabsorb some small superpixels that eventually
are found by Canny, we reinsert the original edges, through
an OR logical operation in those regions filled with clusters
of edges which were glued by the edge density filtering. The
resulting superpixels of this last step are shown in Fig 3 (e).

IV. LEARNING TO SEGMENT A ROAD

Most of the works, which aims at road segmentation,
focuses on one or two road priors (e.g., color, texture or
motion). This means that if one of the priors are not presented
in the image, road information is lost. On the other hand,
computing a lot of features, many times, requires an ex-
ceptional effort in terms of computational resources, making
it difficult to run on-the-fly. Our method integrates four
different types of priors - horizon line, texture homogeneity,
gray amount and motions. In order to keep the computational
load low, simple-but-efficient strategies to compute those
features were developed, as will be described along this
section.

A. Road priors

In Figure 4, the importance of the four priors are depicted
as heat mappings, which show the contribution of each prior
on the final classification. As we have treated the problem
of road segmentation as a learning one, indeed, during the
training, we have chosen to feed the model with several
different situations where the presence of the priors could
happen total or partially. In practice, each prior is computed
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Fig. 4. Heat map illustrating the contributions of each road priors (the closer to one, the hotter, as in the legend on the most right). In (a), the original
image; (b) horizon line; (c) texture homogeneity, (d) gray amount; (e) motion.
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Fig. 3. Superpixel detection. In (a), image provided after background
subtraction after n frames; (b) shows the result of the accumulated Canny
detector (with an edge discontinuity example) over the subtracted back-
ground; (c) shows the result of the spatial filter; (d) illustrates the result of
a thinning morphological operation (without edge discontinuities); finally,
(e) shows the results of the OR bit-wise operation between Canny detector
and the resulting image of the morphological operation.

over a superpixel, which represents the minimum unit to be
analysed in our method.

1) Horizon line estimation: In [19], the authors evaluate
some methods to detect the horizon lines in urban and non-
urban scenes. A particular approach is that one based on
Gabor filter bank, a technique commonly used to output
texture features. From that, the horizon line is estimated as

the line with the maximum response to the filters. Despite
the authors do not deepen in the hypothesis that motivate
this method, it is expectable that, due to perspective effects,
the horizon is the most likely place to contain the highest
concentration of objects in the image. Consequently, in the
horizon line, there also will be the highest concentration of
texture, which will maximize the response of the filters.

Our horizon line detection method is inspired by the
same idea. However, instead of spending more processing
time to perform Gabor, we take the horizon as the line
with the maximum edge density (see Fig. 4(b)), which was
previously performed in the superpixel detection step. It
is straightforward because, once a region has the highest
concentration of texture in an image, this also will be more
likely to contain edges. After the horizon line is found, we
define a prior for each superpixel as a metric of its vertical
position related to this line (normalized in the interval [0;1]).
In other words, since the road will always be below to the
horizon, this prior is proportional to the superpixel part that
meets such a condition. Thus, a superpixel fully below has
maximum prior value, while a fully above one has prior value
equal to zero.

2) Texture homogeneity: In order to reach a large view
of the roads, traffic surveillance cameras are usually placed
in elevated spots, like lamp posts and viaducts. Because the
texture is not distance invariant, the road pavement roughness
is not caught by the cameras. Thereby the road texture
assumes a high homogeneity. When filtered by an edge
detector, objects with homogeneous textures yields fewer
edges than non-homogeneous ones. This way we can further
use the edge density provided by our superpixel method
as a texture homogeneity metric. The heat map in Fig. 4
(c) evidences how much this feature can be meaningful for
our segmentation purpose, highlighting substantially the road
among the other objects. That brings an additional advantage:
a simple and fast way of computing a prior from an already
computed feature (edge density), used for several different
purposes.

3) Gray amount: Commonly, the largest part of a road
is essentially gray. Further, in terms of digital images, the
road color usually presents moderate intensity: it is lower
than a cloudy sky during the day, for example, which owns
a high gray level due to the sunlight behind the clouds;
and, conversely, it is often higher than the gray intensity of



Fig. 5. Some resulting examples. (a) and (c) show original images, while (b) and (d) the correspondent resulting images. The first line shows near perfect
results in challenging scenarios; and the last one illustrates some errors of our method (in the shadows and sidewalk).

buildings, where shadows can commonly be found. In order
to use, as much as possible, the road color information as
a prior, it is convenient to extract this feature from a back-
ground model, avoiding noise due to occlusions. To do that
while saving time, our algorithm reuses the RGB background
model, previously generated by the median filtering (see Sec.
2). So, the gray amount is estimated as follows

G′ =
|r − g|+ |r − b|+ |g − b|

3

G′′ =

∣∣∣∣ (r + g + b)

3
− 0.5

∣∣∣∣
G =

G′ +G′′

2
, (3)

where G′ denotes the average among the differences of the
RGB channels, which lately shows how gray is a pixel,
while G′′ represents how far is the pixel gray level from the
diagonal of RGB cube. The average between G′ and G′′ is
the so-called gray amount. Fig. 4(d) shows the gray amount
in heat mapping; the hotter, more moderate gray level.

4) Motion: While cars are passing on the road, their
motions are an obvious cue to identify the road in the

image. For instance, Melo et al. [5] use a Kalman filter
and a kmeans segmentation approach to track vehicles,
clustering their trajectories, from which the lane geometry
is estimated. In practice, since the usage of such techniques
require a reasonable computational effort, there is no gap
to compute further features. Thus, this type of method only
works in situations where there are cars moving on the road,
and one can track them without occlusion. Also, directly
estimate the road shape through vehicle trajectories is not a
trivial geometric problem. Because of this, road segmentation
methods based on vehicle tracking are difficult to apply
in challenging scenarios (e.g., non parallel multiple roads,
intersections, sharp turns), as is the case of our dataset.

In our work, owing to the utilization of techniques with
low computational complexity, the motion estimation can
be performed along with the extraction of other (static)
features. This makes the algorithm more robust to deal
with partial lack of priors. Other benefit is that vehicle
tracking and trajectory analysis are not necessary, since road
geometry is previously determined by means of superpixels.
To estimate the motion, we utilize the foreground resulting
from the background subtraction described in Section II.
The motion prior is computed by accumulating a foreground



mask along several frames, and finally normalizing it by N ,
i.e. the number of frames in a sliding window. The mask
area determines the spatial component of the prior, i.e., it
separates the image in two kinds of regions: with or without
motion. Additionally, the value accumulated by each pixel
in the mask along the frames, i.e., the frequency which each
pixel appears in the foreground, reveals the motion intensity.
At the end, the motion is generalized for the superpixels
by taking the mean of the motion intensities of the pixels
within the superpixel. Fig. 4 (e) shows the motion intensities
calculated from an instance of our video dataset. The hottest
regions correspond to where the more intense traffic occurs.

V. EXPERIMENTAL ANALYSIS

To assess the performance of the method, a set of 17
videos from different cameras and with an average of one
minute per video was collected. This video set represents a
total of 4,536 frames of different types of urban roads under
challenging conditions: side cars, shadows, lighting change,
non-structured roads, etc. A total of 6,691 superpixels were
detected in those images, where 2,230 frames were used for
training, and 4,461 frames for testing an SVM classifier.
After superpixel classification, the results were matched
with the ground-truth annotations in a pixel-wise manner.
Unfortunately, the correlated works found until now do not
provide neither their codes nor datasets to allow comparative
analysis. Thus, our method was self-compared considering
different SVM kernels. The results are summarized in Table
I .

According to Table I, accuracy, precision and recall for
all kernels are very similar (with exception of precision
and recall in Poly-2 kernel). This indicates that the data
is very close to a linear separability (since linear kernel
presents accuracy very close to the others). By using a
computer with a core i5 processor, 4G of RAM and a
Matlab implementation, time to classify each frame was
approximately 100 ms with no relevant difference among
the kernels used. Fig. 5 illustrates some examples of results:
the first line with near perfect classification results, and the
last one with examples of misclassification in shadow and
sidewalk areas.

The results show the effectiveness of our method regarding
precision and speed, which are of underlying process in real-
life applications.

TABLE I
PERFORMANCE EVALUATION WITH DIFFERENT SVM KERNELS

SVM kernel Accuracy Precision Recall
Poly-3 0.65 0.76 0.81
Poly-2 0.67 0.89 0.74
Linear 0.66 0.71 0.90
RBF 0.70 0.76 0.89

VI. CONCLUSION

In this paper, we presented a fast and efficient method
for road segmentation. The novelty of the method resides
in a superpixel-based segmentation and simple-but-effective

strategies to allow the extraction of multiple road features,
on-the-fly. It makes the method more robust than the state-
of-the-art ones to deal with challenging scenarios (e.g.,
non parallel multiple roads, intersections, sharp turns) under
different conditions (e.g., side cars, shadows, lighting change,
non-structured roads). Furthermore, a new dataset with 17
videos containing the mentioned scenarios and conditions
will be available. As future work, we intend to refine the
motion prior, addressing the issue of noise caused by non
vehicle objects which are moving in the scene.

REFERENCES
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