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Abstract

Accuracy in image object detection has been usually achieved at the expense of much com-

putational load. Therefore a trade-off between detection performance and fast execution

commonly represents the ultimate goal of an object detector in real life applications.

Most images are composed of non-trivial amounts of background information, such

as sky, ground and water. In this sense, using an object detector against a recurring

background pattern can require a significant amount of the total processing time. To

alleviate this problem, search space reduction methods can help focusing the detection

procedure on more distinctive image regions.

Among the several approaches for search space reduction, we explored saliency in-

formation to organize regions based on their probability of containing objects. Saliency

detectors are capable of pinpointing regions which generate stronger visual stimuli based

solely on information extracted from the image. The fact that saliency methods do not

require prior training is an important benefit, which allows application of these techniques

in a broad range of machine vision domains. We propose a novel method toward the goal

of faster object detectors. The proposed method was grounded on a multi-scale spectral

residue (MSR) analysis using saliency detection. For better search space reduction, our

method enables fine control of search scale, more robustness to variations on saliency in-

tensity along an object length and also a direct way to control the balance between search

space reduction and false negatives caused by region selection. Compared to a regular

sliding window search over the images, in our experiments, MSR was able to reduce by

75% (in average) the number of windows to be evaluated by an object detector while

improving or at least maintaining detector ROC performance. The proposed method was

thoroughly evaluated over a subset of LabelMe dataset (person images), improving de-

tection performance in most cases. This evaluation was done comparing object detection

performance against different object detectors, with and without MSR. Additionally, we

also provide evaluation of how different object classes interact with MSR, which was done

using Pascal VOC 2007 dataset. Finally, tests made showed that window selection perfor-

mance of MSR has a good scalability with regard to image size. From the obtained data,

our conclusion is that MSR can provide substantial benefits to existing sliding window

detectors.
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Chapter 1

Introduction

“For every complex problem there is an answer that

is clear, simple, and wrong.

H. L. Mencken”

Interest in machine vision algorithms has increased in recent years. The widespread

use of computer vision intensive applications require the use of robust techniques that

demand non-trivial amounts of computing power. Given these recent trends, techniques

to reduce object detection times, and provide even faster responses, have attracted atten-

tion of the research community, for so many years [Viola & Jones 2001, Zhu et al. 2006,

Prisacariu & Reid 2009].

In the scope of faster detection, when processing an image in search of a certain

object, it is possible to assume that, in most cases, the object of interest will be found

in only a fraction of the search space. This is so because images include background

information, which gives objects contained within it both location and cultural context,

but do not actually define the object of interest. Therefore we can assume that object

search operations dedicate a significant amount of the total time processing background

patterns, such as: sky, earth, water, walls and roads.

Given the aforementioned problem, by making an object detector focus only on more

distinctive image regions one can alleviate total processing time. To achieve such thing,

it is necessary to provide a function that, given an input image, is able to pinpoint which

regions are worth further verification. An overview of this general procedure is depicted

in Figure 1.1.

Another potential benefit of search space reduction is to allow for extra protection

against false positives, that is, regions that a detector would falsely assume to be an

object. In this case, a non-object region could be discarded before actual object detection,

avoiding a potential false positive.

Determining which regions to remove is a challenging task. Incorrectly removing an

object region will negatively affect detector performance and diminish the utility of such
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Figure 1.1: An abstract process which, given an input image (leftmost image) generates an
output (rightmost image) with the regions with highest probability of containing objects

method. Conversely, in case too few regions are removed, the algorithm may not improve

runtime speed in a noticeable manner.

This work presents a solution aimed at harnessing the benefits of search space reduction

and also to avoid most of its shortcomings. Our solution explores saliency information to

sort image regions based on their importance. The regions which are within a previously

defined importance threshold are selected. This process is then repeated over multiple

image scales to capture important objects of different sizes.

In the remainder of this chapter we describe motivation, goals, contributions and

description of the remaining of this work.

1.1 Motivation

Many widely used techniques for object detection and localization have achieved remark-

able results in real life situations, such as [Dalal & Triggs 2005, Viola & Jones 2001].

Those positive results, however, demand for extra computational cost. As such, for many

applications, reaching a good balance between detection results and computational cost

is a challenging task. In particular, applications which have strict time-constrained re-

quirements may have to settle for worse performing algorithms to achieve its runtime

requirements. Common examples of such applications are perception for driver assis-

tance (see a survey in [Enzweiler & Gavrila 2009]), video traffic analysis (see a survey in

[Kastrinaki et al. 2003]) and surveillance systems (see a survey in [Hu et al. 2004]).

Computational cost of object detection becomes an even greater issue when taking into

account availability of high resolution images which demand additional processing time.

Recent advances in camera technology have produced a regular increase in megapixel

resolution of mainstream cameras [Yiu & Varshney 2011]. Compared to the year 2000,
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mainstream cameras average resolution on 2010 has increased from over 3 MP to 18 MP.

Larger resolutions force image processing systems to either downsample the image and

potentially discard important information or to find ways to deal with additional overhead.

Considering the aforementioned issues, by lessening the impact of growing processing

requirements on existing computer vision systems, one can enable the use of more robust

algorithms or can have a higher image processing throughput. To such end, a broad range

of solutions have been developed. For instance, Zhu et al. [Zhu et al. 2006] and Viola and

Jones [Viola & Jones 2001] have developed rejection cascades, reducing the time required

to reject non-objects. These works were based on the so called dense sliding window

search. This search technique relies on a fixed-size window that is moved over the image,

and at each distinct position the detector quality function is evaluated. In contrast,

some alternate approaches rely on a branch-and-bound technique [Lampert et al. 2008,

Keysers et al. 2007], which is capable of discarding several regions simultaneously based

on their bounding function quality score.

We chose a different approach to speed up an object detector, which relies on search

space reduction using saliency information, instead. The question posed by our work is:

What particular characteristics of image objects can be used to reduce the search space of

an object detector?

To capture information particular to objects, we rely on saliency information. As

saliency detectors are able to locate regions which stand out more in an image, they can be

used in a broad spectrum of applications – from thumbnail generation [Hou & Zhang 2008]

to semantic colorization [Chia et al. 2011]. Examples of such saliency methods are found

in [Hou & Zhang 2007], which uses statistical properties of natural scenes to select regions

of interest, and also in [Itti et al. 1998] based on the computation of saliency inspired on

the pre-attentive phase of human visual system, responsible for drawing attention to

specific parts of the visual stimuli.

To summarize, the aforementioned problems motivate our choice for search space

reduction. To provide such reduction, saliency information is used. This choice for saliency

is a consequence of its demonstrated usefulness in a large range of related applications.

As such, saliency, in this work, is used to provide additional information about an image,

helping to select likely object regions.
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1.2 Goals

Sliding window detectors are the most common technique for high-performance object

detection systems [Divvala et al. 2009]. Using a dense search with a fixed-size window

over the image allows the sliding window to detect and localize objects. However, such

dense search on the image space imposes a high processing overhead. Therefore, reduc-

ing the number of windows can make object detection faster, at the cost of negatively

impacting detection performance and localization accuracy. Thus, we explore how to en-

able saliency detection to be capable of selecting which windows to discard, before actual

object detection is applied. Given this direction, the goals are:

1. To speed up object detection by means of window pre-selection. To achieve

effective detector speed up, the decision to select or discard an image before object

detection has to be much faster than the cost of evaluating a detector quality func-

tion.

2. To increase or to maintain detector performance. This goal is necessary, as

without it, the first goal could be achieved through random selection of windows

to discard, with negative impact on detection effectiveness. Thus, our aim is to

provide accurate window selection, with little to none mistakenly discarded objects.

Additionally, performance can also be improved by avoiding potential false positives,

that is, discarding regions that would have been incorrectly considered objects by a

detector.

1.3 Key contributions

Our method, called multi-scale spectral residue (MSR), aims to achieve a better trade-off

between the number of windows selected to be evaluated by a detector and the number

of miss-detections. To do so, we developed a solution to select image regions based on

their saliency information over multiple scales. Proper use of saliency information for

the task of window selection poses many challenges, as the number of different saliency

detection techniques, each based on distinct concepts, requires detailed understanding of

their differences. An earlier iteration of our technique was published at [Silva et al. 2012].

MSR has demonstrated an average reduction of 75% of windows to be evaluated,

while keeping or improving detection performance. Such results are important in several

domains, such as: mechatronics, surveillance and satellite image analysis. These search
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space reduction solutions can help alleviate the burden of image processing for time-

constrained systems.

1.4 Chapter map

The rest of this document is structured as follows:

• Chapter 2 presents the background information about the main topics related to

our work. Included in this chapter are previous approaches, related concepts and

general considerations.

• Chapter 3 describes the range of applications in which saliency methods can be

applied. Furthermore, details are also provided about practical differences between

saliency methods. This information is used to select the best aligned saliency

method for the task of search space reduction.

• Chapter 4 presents our approach for search space reduction and also the different

configurations that can be made on it. In this section, a methodology for measuring

window selection performance is also presented, which will be useful for comparison

of results.

• Chapter 5 evaluates several characteristics of our method, including runtime speed,

effect on detector performance, comparison against other saliency methods and

also performance achieved with several different object classes. A discussion and

an analysis of the obtained results are also presented to summarize the gathered

information.

• Chapter 6 concludes our work, with discussions and future work.
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2.1 Saliency detection methods

An object “stands out” in a scene if it has strong contrast in relation to its neighborhood.

Man-made objects such as stoplight and traffic signs are created to explore this property

in order to be perceived faster than its surroundings. Image saliency detection methods,

in this regard, are able to detect regions that draw more visual attention.
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Approaches to salient region detection can be broadly categorized in four types: local

contrast, global contrast, frequency domain analysis and learning based. Next, each one

of them will be described along with the main works for each category.

2.1.1 Local contrast

Work on object analysis indicates that objects can be described solely through local

information [Kadir & Brady 2001]. In this sense, algorithms for salient region detection

using local information decide how “unique” a given pixel is in relation to its immediate

surroundings, where the concept of uniqueness varies for each solution.

One of the first approaches to salient region detection, [Itti et al. 1998] is based on

the behavior of the early primate visual system. Detection of salient regions uses center-

surround features, in which the center of a region generates strong feature response while

its (weaker) surrounding regions inhibit it. This center-surround feature is calculated as

the difference between high frequency (fine scale) and low frequency components (coarse

scale) of a region. The across-scale difference between each region is determined from

interpolation of the coarse scale to the finer scale followed by point-by-point subtraction.

The center-surround features are calculated over color, intensity and orientation spaces

over multiple image scales to detect salient points with a wide range of characteristics. The

saliency maps generated from multiple scales and spaces are then combined to generate

a final saliency map using

Si =
1

3
(N (I) +N (C) +N (O)), (2.1)

where I represents the multiple intensity maps, C and O denote color maps and orien-

tation maps respectively. The multiple scales of a given space are combined through a

normalization function N (·), that gives more importance to maps that have only a small

number of strong responses. The three resulting normalized saliency maps are summed

and averaged to generate a single saliency map.

A similar approach to [Itti et al. 1998] was presented in [Harel et al. 2007], which uses

a graph-based approach for saliency detection. In this approach, saliency of a region is

calculated from a dissimilarity measure from its neighbors. Given two points I(i, j) and

I(p, q), on an image I, this dissimilarity is defined as

d((i, j)||(p, q)) , log
I(i, j)

I(p, q)
, (2.2)
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where , represents “defined as”, while d(·||·) the dissimilarity function itself. From this

dissimilarity, the image can be represented as a fully connected directed graph, where

each node is connected to every other node in the image. For each connection a weight is

assigned using

w((i, j), (p, q)) , d((i, j)||(p, q)) · F (i− p, j − p) , (2.3)

where F is defined as

F (a, b) , exp

(
−a2 + b2

2σ2

)
, (2.4)

where σ denotes a free parameter defined empirically. The formulation for w(·) assigns

more weight to nodes which are similar and spatially close to one another. From this

concept, a Markov Chain is apllied over the graph so that regions that are more locally

dissimilar will generate a stronger saliency.

2.1.2 Global contrast

Unlike local contrast saliency detection approaches, global contrast methods rely on in-

formation of the entire scene to decide how salient a region is. This concept agrees with

human intuition where less frequent features are more likely to stand out in a scene

[Feng et al. 2011].

Using the concept of rarity, and based on the psychological studies about human

perception sensitivity to contrast, [Zhai & Shah 2006] present a method for detection of

prominent actions in video sequences. In this model, saliency of a pixel can be defined as

Sz(Ik) =
∑
∀Ii∈I

||Ik − Ii|| , (2.5)

where Ii and Ik are pixels intensity value at ith (and kth) position in an image and || · ||
represents the Euclidean distance. This way, this model assumes that pixels with greater

contrast in relation to other pixels are more salient. Equation 2.5 can also be represented

as

Sz′(Ik) =
255∑
n=1

fn||Ik − In|| , (2.6)

where In denote an image pixel intensity value, fn is the frequency of a particular pixel

intensity, while n is a pixel intensity. In equation 2.6, the sum operator calculates the



10 Chapter 2. Background

Figure 2.1: Comparison of several saliency methods. Image taken from
[Achanta et al. 2009]

weighted difference of am from each distinct intensity value, all these values are within

the range of [0, 255]. The algorithm complexity is dependent on the number of colors n.

To avoid an overhead in runtime speed only the luminance channel of the LAB space is

used for contrast calculation.

An earlier iteration of saliency detection by Achanta et al. (2008) finds saliency

by generating contrast maps at multiple image scales. These maps are then combined

to generate the final saliency map [Achanta et al. 2008]. More recently, Achanta et al.

(2009) model the saliency of a pixel as its average distance from others in LAB space,

using

Sa(x, y) = ||Iπ − I(x, y)||2 , (2.7)

where Iπ is the mean image feature vector, I(x, y) is the original pixel value, ||·||2 represents
an L2-norm where each pixel is a feature vector of type [L, a, b]. In order to avoid high

frequency noise and fine texture the input image is blurred using a 5x5 gaussian filter.

This method preserves most of the high frequency content, thus generating high-resolution

saliency maps unlike [Itti et al. 1998, Harel et al. 2007, Hou & Zhang 2007].

A comparison of Achanta et al. (2009) with other saliency methods is presented in Fig.

2.1. In this example, the high resolution of [Achanta et al. 2009] results is a distinctive

feature.

One limitation of the work presented in Achanta et al. (2009) is that it only considers

first-order average color information, this may affect its performance on more intricate

patterns that are common on natural scenes [Cheng et al. 2011a]. Thus, in the work of

Cheng et al. (2011), an approach was made based on:

• spatial contrast, defined by the rarity principle, that is, less frequent regions are
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Figure 2.2: Examples of saliency detection and segmentation using [Cheng et al. 2011a].
In the second row the saliency maps generated from the input images from the first row.
The third row are the object masks generated from the saliency map. Image taken from
[Cheng et al. 2011a].

more salient. This definition is somewhat similar to the concept defined in Equation

2.6 from Zhai and Shah (2006). However, instead of using only the luminance

channel and discarding potentially useful color information as [Zhai & Shah 2006],

each color channel is quantized to 12 distinct values. The number of colors is further

reduced from 123 to roughly 85 through elimination of colors that are too rare to

be relevant for saliency detection. Furthermore, to avoid quantization artifacts, a

color space smoothing is applied that replaces the saliency value of each color by an

average of similar color saliency values;

• spatial coherence, representing spatial distances between image regions and how

the distance affects their saliency intensity. That is, regions with high contrast with

spatially close regions are more likely to be truly salient than when compared to

regions with high contrast only to distant image regions.

The results of this approach can be seen in Fig. 2.2, where object segmentation is

obtained from solely the saliency information.
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2.1.3 Frequency domain analysis

The Fourier transform allows an image to be represented in the frequency domain. This

transform gives spectral information that can be used to search for characteristics that

are recurrent in salient regions.

As properties common to salient objects are hard to conceptualize, the Spectral Resid-

ual [Hou & Zhang 2007] explores properties of the background. For that, the 1/f law

states that over an ensemble of natural images, the fourier spectrum will obey the distri-

bution

E{A(f)} ∝ 1/f , (2.8)

where E{A(f)} is the average amplitude over frequency f in the ensemble of natural

images. As the 1/f law is likely not to hold true in individual images, parts of the spectrum

that generate larger differences between the expected and the actual distribution are likely

to contain novel information [Hou & Zhang 2007]. These regions with larger differences

were interpreted by Hou and Zhang (2007) as composing possible objects in an image. To

calculate such deviations the following formulation was used:

B = L(A)− hn ∗ L(A) , (2.9)

where L(A) is the log amplitude of the fourier domain, and hn is a 2D convolution filter of

size n×n. This formulation intends to capture regions containing statistical singularities,

which jump out of the expected 1/f distribution. The residue B is then re-combined with

the phase information and inverse fourier transformed to generate the final saliency map.

This method is further detailed in Section 3.2.

Also using spectral information, [Guo et al. 2008] add spatio-temporal information to

a salient detector based on phase information from the frequency domain. This method

relies on the fact that phase information has information about salient regions of an image.

In this method, each image frame is represented by: one motion, one intensity and two

color channels. The intensity channel is an average of the three channels from the image in

RGB, while the motion information is calculated by subtracting the current frame from

its preceding one. These individual channels are combined into a quaternion image in

which a quaternion fourier transform [Ell & Sangwine 2007] is applied. To extract phase

information from the frequency domain, its entire magnitude is set a constant value. In

this case the value one was chosen but any non zero value would suffice. The image

in frequency domain is then inverse transformed and the saliency map generated. An
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Figure 2.3: Examples of saliency map generated by quaternion fourier transform. Image
adapted from [Guo et al. 2008].

example of the generated saliency map can be seen in Figure 2.3

The main advantage of using a quaternion transform is being able to compute all four

channel in a parallel manner. Conversely, a common approach would be to calculate four

distinct fourier transforms, one for each channel, substantially decreasing runtime speed.

2.1.4 Learning-based methods

Saliency detection can be generated using two distinct approaches: bottom-up and top-

down. The former represents on information obtained from an image, while the latter

require previous training and calibration for proper detection of objects. Learning-based

methods are, by definition, a top-down approach.

Using a dataset of eye-tracking data, Judd et al. (2009) extracts several features in

order to predict where humans will look [Judd et al. 2009], this prediction is compared

to the groundtruth generated as shown in Fig. 2.4. To properly model human focus of

attention in images, a broad range of features was selected. These are:

1. low level features using local energy of steerable pyramid filters

[Simoncelli & Freeman 1995], which were shown to correlate with visual attention;

2. mid-level gist features [Oliva & Torralba 2001] capable of detecting the

line of the horizon, this is useful because objects are normally found on earth’s

surface, therefore the horizon is a place where humans normally look for objects;
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Figure 2.4: The original image (a), participants gaze is then inspected for the image and
forms the groundtruth (b); the image (c) represents the saliency map generated by using
a gaussian filter over the fixation of the participants. Finally, the (d) image represents its
20% most salient parts. Image from [Judd et al. 2009].

3. high-level features using a face and a full body person detector, based on

the fact that human attention is easily fixated to other persons and faces

4. Center bias, photographs are normally taken with the object of interest in the

center, as such, salient regions closer to the center will generate higher saliency.

Similarly, Liu et al. (2011) combines several features using a Conditional Random

Field (CRF). One of the features is the center-surround, which is similar in purpose to

the one described in Section 2.1.1, although implemented differently. This center-surround

feature compares a region and its surroundings using X 2 between RGB color histograms

with

X 2(R,RS) =
1

2

∑
i

(Hi(R)−Hi(Rs))
2

Hi(R)−Hi(Rs)
, (2.10)

where R represents the center region rectangle, Rs the surrounding region rectangle, and

Hi(R) the ith bin of the histogram of H(R). This comparison of regions attempt to

capture the natural local contrast of an object in relation to their surroundings.

Another feature is based on multiple scale contrast. Focusing on detection of strong

pixel-level contrast in relation to a 9x9 neighborhood:
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Figure 2.5: For each column, from left to right: the input image, multi scale contrast,
center-surround, spatial color distribution and the final (binary) saliency map generated
by the CRF. Image extracted from [Liu et al. 2011].

fc(x, I) =
L∑
l=1

∑
x′∈N(x)

||I l(x)− I l(x′)||2 , (2.11)

where I l is the lth image scale, L was empirically defined as six, and N(x) is defined as a

9x9 window. This contrast feature gives strong responses on object borders and penalizes

homogeneous regions.

The last feature uses the color rarity principle, similar to [Cheng et al. 2011a] (de-

scribed in Section 2.1.2), where less frequent colors are more likely to contain salient

regions [Liu et al. 2011]. An overview of each feature extraction is presented in Fig. 2.5.

2.2 Object search

Localization of an object within an image requires the use of search methods to define

which regions an object detector can be applied. The output of a search procedure varies

according to the method used, and ranges from a set of pixels, rectangles, contours or

object centroids.

Among existing search methods, sliding window approches are the most used on high-

performance recognition systems [Divvala et al. 2009]. The method works by sliding a

fixed-size window over the image, evaluating a quality function g(·) at each unique window
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position. This quality function is commonly chosen to be one of the many available

classifiers, some of which are described in 2.3.2. Given a quality value, g(R), for each

rectangle R, the actual object location is found, as shown in [Lampert et al. 2008], using

Ro = argmax
R⊂I

g(R) , (2.12)

where R is the subset of fixed size rectangles within an image. The use of a fixed-size

window restricts the size of the object and the aspect-ratio, limiting the search scope. To

avoid limiting object size, the image can be repeatedly downscaled by a constant ratio and

the search done on each different image size. Therefore, as the image becomes smaller,

the fixed-size window is able to wrap bigger objects.

A limitation of Eq. 2.12 is the implicit assumption that there is only one object of

interest. In case the presence of multiple objects is possible, non-max suppression (NMS)

can group several rectangles that are similar in size and position into a single one. Thus,

after NMS, the remaining rectangles are considered actual object detections.

Although the sliding is a simple and effective method for finding objects, it has some

important drawbacks. One of the most important disadvantages is the high number of

rectangles evaluated by the quality function, this number can be calculated using

NR =

(
1 +

wi − ww

sh

)
·
(
1 +

hi − hw

sv

)
, (2.13)

where wi and hi are the image width and height, respectively, ww and hw are the window

width and height, sh is the horizontal stride and sv is the vertical stride. The stride

represents how many pixels the window will be displaced after to evaluation of g(R).

Thus, if evaluation of g(R) is costly, processing a large image at multiple sizes may

become prohibitive. An option to reduce total time is to increase the stride sh and sv

reducing the number of windows to be evaluated. However, this change in stride may

sacrifice localization accuracy.

Several attempts have been made reduce either the image search space or time re-

quired to evaluate the quality function. On the remaining of this section we will concen-

trate on describing contextual methods, branch and bound approaches and saliency-based

approaches that aim to tackle that issue.
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2.2.1 Contextual methods

Context is broadly defined as any information in the scene that influences the way objects

are perceived [Strat 1993]. Context methods use information pertaining objects, their

relations to other objects and the scene.

One might use context to discriminate between two similar objects according to char-

acteristics of the background, for example, to help a detector with the choice between a

computer monitor or a television as detection result of an object. Another use is to limit

search to regions that are more likely to contain the object of interest.

A context detector, capable of finding regions likely to contain bicycles, cars and

pedestrian, was presented in [Wolf & Bileschi 2006]. The architecture is similar to a

rejection cascade, where the context detector is applied to a region and tested against a

threshold value. In case a region score is above the threshold an appearance detector is

applied.

The context features of [Wolf & Bileschi 2006] are based on several layers of contextual

information, and can be divided in three broad categories: color, texture and position

types. Color is represented in CIE LAB space, which is based on a non-linear compression

of CIE XYZ and intended to model the way human perceive color variation. The texture

layers capture local information about brightness gradient. While both texture and color

layers are based on previous work of Belongie et al. (1998), the position layer was added

to calculate the distance of a given pixel to a set of fixed points, allowing even linear

classifiers to detect whether a feature is far or close from the center.

Photographers commonly put an object of interest in the center of the photograph.

This is a type of cultural context [Divvala et al. 2009]. Algorithms that depend on such

context, as the aforementioned [Wolf & Bileschi 2006], are sensitive to tilted, rotated or

non-biased images. To avoid such restriction, [Perko & Leonardis 2007] enumerate several

context sources and do not rely on object’s position in a scene. That implementation is

based on geometric features that segment an image into three groups: sky, vertical objects

(buildings, etc.) and ground. Texture features are based in an image representation called

blobworld, created in [Belongie et al. 1998]. A novel context feature is also included, based

on a horizon estimate.

The algorithm from Perko et al. (2007) learns context features of objects by analyzing

labeled images. Each positive and negative training sample context features are extracted

over five radii and twelve orientations around the object, as shown in Fig. 2.6. These

context features are used to feed a Support Vector Machine (SVM) to detect regions that

are more correlated with the presence of the object of interest.
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Figure 2.6: Example of feature extraction by [Perko & Leonardis 2007]. From left to right:
input image with a yellow star over the object of interest, image cropped over object,
features extracted over five radii and twelve orientations, resulting feature vectors. Image
from [Perko & Leonardis 2007].

2.2.2 Branch-and-bound methods

In most object detection applications a large part of the input space is irrelevant. As such,

discarding multiple regions, without evaluating the quality function, can yield better

runtime performance. The branch-and-bound (BB) technique attempts to maximize a

function q(x), where x denotes the elements of the search space X.

A branching function divides X into n subsets X1, X2, ..., Xn where X1∪X2∪ ... Xn =

X. Then, each subset has its maximum and minimum values calculated using a bound-

ing function q̂(·). When a subset has an upper bound smaller then the lower bound of

any other subset, it can be safely removed (pruned) from the search space. While the

maximum for q(x) is not found, the branching procedure is repeated recursively and new

bounds evaluated.

Recent approaches have adapted BB techniques to object search in machine vision

applications. One such algorithm is the Efficient Sub-window Search (ESS), described

in [Lampert et al. 2008]. In ESS the search space is the entire set of possible rectangles

R in an image. In this model, the branching function splits the rectangle space and the

bounding function q̂(·) is required to meet two conditions:

i. q̂(R) ≥ max
R∈R

q(R) (2.14)

ii. q̂(R) = q(R), if R is the only element in R (2.15)

where R is the rectangles of a subset. Equation 2.14 guarantees that q̂ acts as a bounding

function and Eq. 2.15 guarantees that the solution found is equivalent to an exhaustive
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Figure 2.7: Matching a reference image against a dataset. Image taken from
[Keysers et al. 2007]

search (evaluating the entire search space). Using this formulation, ESS average algorithm

complexity is O(n2).

Another approach for faster object recognition in images uses optimal geometric

matching [Keysers et al. 2007]. This method compares and matches two patch-based

object representations even after rotation, translation or scaling. The matching between

patches of the input image against a training dataset is done using BB optimization. This

process is outlined in Fig. 2.7.

To match a target object in an image the first step is to perform an interest point

detection, such as SIFT [Lowe 1999], followed by extraction of image patches from the

interest points in multiple scales. The extracted patches are substituted by their closest

patch clusters obtained from a training set, containing the object of interest. Finally,

the algorithm searches for the optimal matching between the reference images and the

training set, and decides which training image is the closest match to the target object

using BB optimization to search for the patches in the input image.
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Figure 2.8: Detection a region of interest using Difference of Gaussians. Image from
[Yiu & Varshney 2011]

2.2.3 Saliency-based methods

Focusing limited resources only on important regions of an image can reduce the time

required to properly evaluate it. This way, saliency methods highlight regions that “stand

out”. This information may allow one to reduce the actual search space during object

detection by ignoring unlikely regions.

When navigating for huge giga-pixel images, the process of finding regions of interest

can be tedious. This issue is tackled in [Yiu & Varshney 2011], where regions of interest

are detect through analysis of saliency at multiple scales. To detect salient regions a

Difference of Gaussians (DoG) is calculated (see Fig. 2.8) in a similar but simpler way

than [Itti et al. 1998]. An important difference to [Itti et al. 1998] is that the saliency

maps of each scale are not aggregated into a single saliency map, they are analyzed

independently, which avoids mixing salient objects with different sizes: a parking lot with

smaller objects within, like a person or car.

In a particular region of an image, even though a crack on the floor may be considered

a salient region, the frequency of its appearance on the rest of the image may diminish its

significance. Taking this into consideration, salient patches in [Yiu & Varshney 2011] are

described using MPEG-7 color structure image descriptors, which counts colors frequen-

cies using a 8 × 8 sliding block over each salient patch. Using this formulation, regions

can be compared using Euclidean L2 norm distance. From the description of each patch,

a k-Nearest Neighbor (k-NN) is applied to detect unique regions and tease out locally

salient regions that are too frequent in the scene. To achieve such effect, only the top 3%

regions, from an average distance standpoint, are kept after k-NN.

In one of the test images, salient region detection selected over 18.000 regions, which

were further reduced to 525 after k-NN. Manual intervention was required to change the
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number of selected regions down to only 64. This selection of regions of interest enables a

human observer to quickly focus on important regions, and it also allows automatic image

navigation to important parts of the image.

Another approach to reduce the image space is based on finding the most unique

regions on the image. This insight led [Feng et al. 2011] to develop a saliency method

that tries to compose a region with others in the image. Thus, the harder it is to compose

a region the more salient it becomes.

To find unique regions, pixels are first segmented into super-pixels using

[Felzenszwalb & Huttenlocher 2004]. These regions are compared using a spatial and

an appearance distance. Let p and q be any two segmented regions, the spatial distance

ds(p, q) is calculated using a Hausdorff distance while appearance distance da(p, q) uses

histogram intersection of LAB space color histograms, given as

H(I) ∩H(I ′) =
n∑

j=1

min(Hj(I), Hj(I
′)) , (2.16)

where I and I ′ are images, with H(I) and H(I ′) as their respective histograms. From

these distances, the cost, c(p, q), of composing a region with another is defined as

c(p, q) = [1− ds(p, q)] · da(p, q) + ds(p, q) · dmax
a , (2.17)

where dmax
a is the biggest value for appearance distance in the input image.

With the cost of composition defined for each region pair, a sliding window is applied

over the image at multiple scales. For each window position, a greedy optimization is

applied to select the best regions to compose the area within the window. Additionally,

other cues are also applied, such as giving preference to objects closer to the center. Thus,

in [Feng et al. 2011], the saliency value for a window is its composition score.

2.3 Object detectors

Object detectors are responsible for, given an input image, detection and localization of

the object of interest. Object detectors are often composed of two main phases: feature

extraction and classification.
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2.3.1 Feature extraction

Feature extraction aims to reduce image space into more meaningful elements than, for

example, color intensities. This is done through detection of distinctive properties of

objects, such as: color, texture and shape.

Color information can normally be obtained directly from the image representation.

Different images formats can be used to represent an image color distribution, such as

RGB, HSV and LAB.

Filtering certain color types is important in case objects can be identified through a

particular color. Another purpose is reducing the search space of an object detector that

has a recurring color. An example of such case is face filtering, where [Peer et al. 2003]

developed a set of rules to define the most common colors within a face:

R > 95 , G < 40 , B > 20 (2.18)

max{R,G,B} −min{R,G,B} > 15 (2.19)

|R−G| > 15 , R > G , R > B (2.20)

According to [Vezhnevets et al. 2003], approaches relying on a trial and error proce-

dure to define a specific set of filter rules is a disadvantage of methods such as of Peer et

al. (2003). Modern approaches tend to rely on learning methods to automatically create

color filters, such as in [Gomez & Morales 2002].

Although color is an important information of most objects, some objects may be

better defined by recurring patterns within their area. A texture has repeating elements,

where each individual element may be defined by a single pixel, a group of pixels, fractals

and many other types [Ballard & Brown 1982].

A widely used texture extractor is the Gray Level Co-Occurrence Matrix or GLCM. It

works by establishing a relation between every pixel in the image and its neighbor. Given

a reference pixel, its neighbor is commonly defined as its right pixel, but other ways are

also possible. Basically, a GLCM finds how well a certain reference and neighbor values

correlate with each other [Hall-Beyer 2007]. This information can be used to calculate

information that describe some properties of a texture, such as: contrast, correlation,

energy and homogeneity.

In an attempt to capture shape information of an object, Haar-like features were ini-

tially proposed in [Papageorgiou et al. 1998] and extended in [Viola & Jones 2001]. These

features attempt to infer the shape of an object through simple gradient calculation, as
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Figure 2.9: Some types of Haar-like features. These features are composed of two groups
(black and white). The sum of the color intensities is calculated in each group and
subtracted to calculate the gradient between the regions [Lienhart & Maydt 2002].

presented in Fig. 2.9.

Haar-like features can be calculated very fast using the integral image representation

[Viola & Jones 2001]. This representation allows one to calculate the mean of a given

rectangular region of interest in constant time. This is so as each point in an integral

image is equivalent to the sum of all values from the left and above, as

I ′(x, y) =
∑

x′≤x,y′≤y

I(x′, y′) . (2.21)

Using the formulation presented above, a given rectangular sum can be calculated

from an integral image using only four array references

s(x, y, w, h) = I ′(x−1, y−1)−I ′(x−1, y+h)−I ′(x+w, y−1)+I ′(x+w, y+h) , (2.22)

where w and h are the rectangle width and height, respectively. It is worth noting that

the integral image has the same size as the original plus one at each dimension.

Although integral images [Viola & Jones 2001] allow fast Haar-like feature calculation,

these features are not suitable for all situations. In particular, its ability to detect shapes

is reduced when dealing with objects in complicated backgrounds and with strong illumi-

nation changes [Zhu et al. 2006]. Histogram of Oriented Gradients [Dalal & Triggs 2005]

(HOG) achieve overall better performance. HOG is based on the assumption that much

of an object appearance can be described by the distribution of local intensity gradients.

This is achieved through small spatial cells which accumulate one-dimensional histogram

of gradient directions. To achieve better invariance to illumination, the cells are contrast-

normalized over a block, a larger spatial region, as illustrated in 2.10. For more detailed

information on the very choice of each parameter please refer to [Dalal 2006].
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Figure 2.10: A histogram of oriented gradients gradient values are accumulated over
blocks, cells and bins. Image taken from [Oliveira 2010].

2.3.2 Classification

Among the classifiers, decision trees, which are detailed on [Bradski & Kaehler 2008], are

a common choice. In this method, the decision itself is represented by a tree-like data

structure. Each node in that tree represents a decision, which is dependent on a feature

value, for instance fi > 0.3 where fi is a specific feature i value. In case the condition is

true, a branch is taken, otherwise, another one is chosen instead. Every branch changes

the underlying probability that a given sample belongs to the class of interest or not, and

this proceeds until the error margin is within the specified limits. The main advantages

of decisions trees are its simplicity and natural interpretation of a trained tree. One of its

limitations is the predisposition to overfit.

In contrast to decision trees, boosting techniques are based on combining several in-

termediate predictions, which are guaranteed to be only better than chance, to generate

an accurate result [Freund et al. 1999]. Classifiers that are only required to be slightly

better than chance are called weak classifiers.

An example of boosting is adaptive boosting (AdaBoost) [Freund & Schapire 1996],

where each new classifier in the chain concentrate on samples that are being incorrectly

classified. A common weak classifier for AdaBoost are Decision Trees, in this case however,

each tree is made to only have few branches. From the result of each weak classifier,

Adaboost combines them and decides whether a sample is positive (1) or negative (0)

using



2.3. Object detectors 25

D(x) =

{
1 if

∑T
t=1 αtht(x) ≥ 1

2

∑T
t=1 αt

0 otherwise
, (2.23)

where αt is log
1
βt

and ht is a weak classifier receiving only one feature, βt =
εt

1−εt
where ε

is the error, defined by

εt =
∑
i

wi|hj(xi)− yi| , (2.24)

where wi is the weight of weak classifier i.

Adaboost was used with Haar-like features and integral images in

[Viola & Jones 2001], to create a fast face detector. This fast classification was

achieved through a rejection cascade, where the classification happens in several layers.

The initial layers discard several samples using only a small number of features, achieving

fast rejection. Each subsequent layer increases the number of features used, allowing

detection of more negative samples at the cost of additional runtime. In this structure,

only the last layers label an object as an actual positive sample.

The good classification results achieved with Adaboost, as seen in [Viola & Jones 2001,

Lienhart & Maydt 2002], are related to its ability to find linear classifiers that separate

high dimensional data [Freund et al. 1999]. Similarly, Support Vector Machines (SVM)

also have this characteristic, however, it is achieved in a different way. To deal with high di-

mensional data, a SVMmakes use of a Kernel, which allow for low dimensional calculations

in a way equivalent to an inner product in a higher dimensional space [Freund et al. 1999].

The SVM was developed by [Vapnik 1999]. A short definition is given in

[Araújo et al. 2008]: a binary classifier that embodies Structural Risk Minimization

(SRM), Vapnik-Chervonenski (VC) dimension theory and Optimization Theory.

One of the most important concepts behind the SVM is the kernel mapping function. A

kernel maps the input features to a higher dimensional space. However, a kernel function

is required to satisfy Mercer’s Condition, which imposes that the kernel matrix used to

define the kernel mapping function has to be positive semidefinite [Araújo et al. 2008].

Among the many kernel types available, the SVMlight [Joachims 1999] implementation

provides four kernel types: linear, polynomial, radial basis function and sigmoid. The

specific choice of kernel type can made based on prior knowledge about the types of

invariance on input features. In case no prior knowledge exists, the best match can be

found by cross-validation.
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Figure 2.11: Images from MIT+CMU dataset [Schneiderman & Kanade 1998,
Schneiderman & Kanade 2000]

Figure 2.12: Images from INRIA dataset [Dalal & Triggs 2005]

2.4 Datasets

Image datasets can be defined as a collection of related images organized in a common

structure. Most datasets are built around an object or task, for example, person detec-

tion. There are several different ways to organize image datasets, but they are normally

composed of three folders: training, validation and testing. The training folder is com-

monly created with fixed-size images and populated with positive and negative samples,

and it can be directly used to train an object classifier. Similarly, the validation folder is

composed with positive and negative samples of fixed-size images. However, these samples

are used to reduce overfitting through methods such as cross-validation. In contrast, the

testing folder can be composed either of entire scenes or be cropped around the object of

interest (and is used to test the trained object detector performance in a distinct set).

With a common structure, existing datasets provide an easier alternative in compar-

ison to manual collection of images from unstructured sources such as Flickr1. Another

advantage of using existing datasets is that comparison of results becomes easier, as not

using the same images may bias the results towards one dataset or another. This is high-

lighted on Figs 2.11 and 2.12, where one dataset uses gray-level images have a mostly

homogeneous background and the other has colored images and a very cluttered environ-

ment.

1Available at www.flickr.com
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Figure 2.13: Images and the annotated objects from Pascal Voc Website
[Everingham et al. 2012]

Figure 2.14: Example images of the PETS2006 dataset extracted from [PETS 2006]

Several competitions are based on public datasets. One of such is the Pascal Visual

Object Classes (VOC) Challenge [Everingham et al. 2012]. The Pascal VOC is done every

year and currently has 20 object classes, 11,530 images and 27,450 annotated objects.

The images themselves have different levels of clutter and contain several environments.

A sample of the images and their annotations are presented on Fig. 2.13.

Pascal VOC focuses mostly on general object detection and segmentation. Other

datasets tackle different problems. One such example is [PETS 2006] that focus on de-

tecting unnatended luggage, as shown in Fig. 2.14. In this case, the scenario is mostly

constant and several frames of surveillance cameras are annotated and made available for

research purposes.

In order to make dataset creation easier, recent works have focused on building datasets

dynamically. With the advent of image search tools (e.g., Google Image), automatic
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generation of datasets has become easier. One such work searches a given human pose by

keyword, and through incremental preprocessing and filtering selects only a subset of the

returned images [Ikizler-Cinbis et al. 2010]. In order to detect recurring patterns in the

extremely varied results, their method selects the twenty most relevant images returned,

and uses then to train a logistic regression classifier. This classifier is used to measure

what parts of the foreground they have in common. Another approach for web search was

proposed by [Schroff et al. 2007], who not only uses the image visual properties but also

textual information returned from the query.

Instead of searching through textual queries, [Ferecatu & Geman 2007] propose to

capture the abstract knowledge of the user in order to iteratively find the object category

of interest. The user is presented with a set of general categories, from those he chooses

one with a closer match to the desired one. The proposed method, based on the chosen

image, computes the next categories until the desired one is found. This solution is able

to group images based on their general composition.

Dynamic generation of a dataset solves the problem of finding images of objects.

However it cannot effectively provide object annotations without manual intervention.

This issue was tackled on the LabelMe project [Russell et al. 2008], an online and dynamic

database of annotated images. Image uploads and object annotations can be made on

the fly and even crowdsourced [Sorokin & Forsyth 2008].

2.5 Relation to our work

Several techniques have been created to reduce the search space in an image. Some of

these were described in Section 2.2. This can be useful, for example, to speed up object

detection by reducing the number of times a detector has to be used. As a detector

is comprised of image preprocessing, feature extraction and classification, such expensive

operations should be done only on regions with greater probability of containing an object.

Moreover, excluding regions may reduce risk of false positive detections.

Our work approaches the search space problem using a saliency-based approach, based

on multi-scale spectral residue (MSR) analysis. This is achieved through an adaptation of

the spectral residual method [Hou & Zhang 2007] in order to enable its use in multi-scale

environments. From the use of saliency information in multiple scales, MSR attempts to

discard unimportant regions before actual object detection. Moreover, MSR was intended

to be fast from the ground up. This was meant to allow faster image processing for sliding-

window based object detectors.
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While similar in some aspects to MSR, other techniques have some significant differ-

ences. Although Feng et al. [Feng et al. 2011] assign a saliency score to each window, this

score is calculated independently for each region, while in MSR the saliency itself is calcu-

lated only once for the entire image. Additionally, MSR relies on properties of objects on

the frequency domain, while Feng et al. (2011) relies on spatial (location) and appearance

properties of objects. Our approach is also distinct from Yiu et al. [Yiu & Varshney 2011],

which relies on saliency detection based in local contrast and finding regions which are

unlike others in the image.

In contrast to branch-and-bound techniques reviewed in Section 2.2.2, MSR does not

require the use of linear classifiers or local image descriptors. [Keysers et al. 2007] directly

rely on a bag of words representation, which greatly limits the scope of application,

excluding sliding window detectors based on HOG or Haar-like features. This limitation

is important since sliding window approaches are the most used search method in high

performance object detectors [Divvala et al. 2009].

MSR uses a saliency method to detect possible regions of interest in an image without

requiring previous learning from a training database, this is a bottom-up approach. While

contextual methods, as [Wolf & Bileschi 2006], rely on a top-bottom approach, where each

object class context is learned independently. Since MSR requires no training for each

specific object class, it can be executed only once and its results may be used for each

distinct object detector, saving computational time.

In summary, MSR is a novel method that was created to allow a trade-off between

number of windows selected for detection, and the number miss detections. Our results

show good selection performance within the range of 70-80% reduction on window evalu-

ations, while improving or at least maintaining detector performance.

In the following chapter we provide the main differences between existing saliency

methods. This will be used to justify our choice of saliency method used by MSR. More-

over, we also provide a more detailed analysis of our saliency method of choice, which is

SR, including its main advantages and limitations.
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According to Rensink (2000), human visual system can be divided into two main

phases:

• The first phase is the initial processing state, rapid and parallel over the input

visual stimuli. This phase happens before focused attention starts. The result from

this phase is low-level information about structures in the visual stimuli. These

structures are called proto-objects, and describe regions that require additional vi-

sual processing.

• In the second phase, a set of detected proto-objects is observed in detail. This

attention phase is task-oriented, serial and slow when compared to the first phase.

Resulting from this attention phase, a detailed internal representation of these proto-

objects with both temporal and spatial coherence [Rensink 2000].
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Since the cognitive capabilities of the human brain are limited, focusing attention on

a small number of possible salient regions (or proto-objects) can help reducing the visual

information that has to be processed by the attention phase.

The concept of saliency can also be applied to digital images. In this case, saliency is

normally associated to the concept of rarity, surprise, visual uniqueness or unpredictability

[Cheng et al. 2011a]. There are many possible principles that can be used to find salient

regions. These are described in at Section 2.1. To summarize, the ways to search for

saliency are

1. Local contrast, as in [Itti et al. 1998, Harel et al. 2007].

2. Detection of regions with highest global contrast (rarity) [Feng et al. 2011,

Zhai & Shah 2006].

3. Analysis of spectral information [Hou & Zhang 2007, Guo et al. 2008].

4. Learning from image examples [Judd et al. 2009, Liu et al. 2011].

Among the advantages of saliency detection in digital images, the ability to detect

objects even when no prior information is available is one of the most important. Such

bottom-up approach can find regions of interest in an image without relying in prior

knowledge about specific objects. This flexibility enables the use of saliency information

to solve a broad range problems.

In [Hou & Zhang 2008], thumbnails are generated by detecting the most salient region

in images. Salient regions are found based on the global rarity of their color and texture

information. Finally, an empirical trade-off is selected between information density and

region size, generating the final cropped image (Fig. 3.1).

Detecting salient regions can also help bottom-up image segmentation, where saliency

indicates regions in which objects are more likely to be found. In [Cheng et al. 2011a],

global contrast is used to segment image objects. Likewise, [Goferman et al. 2011] also

use saliency to segment image objects, but to achieve such result they rely instead in a

combination of local contrast, global contrast and prior information about common salient

objects, such as human faces.

Another application of saliency information is to reduce the object detector search

space, which is the focus of our work. In this context, an actual object detector can be

used solely at candidate regions, proto-objects, to find which correspond to the object of

interest. This can help achieve faster image processing. Also, discarding regions can avoid

some potential false positive detections. An example of work applying this concepts can
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Figure 3.1: Example of thumbnails generated for images. Image taken from
[Hou & Zhang 2008].

be found in [Feng et al. 2011], where only the most salient regions are selected for object

detection.

The remaining of this chapter will evaluate different characteristics of saliency detec-

tion methods. These characteristics will outline practical differences between the methods

and for which situations they are most suited.

3.1 On the use of saliency detectors

Methods used to detect important regions in an image extract information from local

contrast, global rarity, spectral information and learned data. Some approaches ex-

plore a combination of low and high level information for better performance, such as

[Goferman et al. 2011].

The concept used to detect salient objects can modify the generated saliency map

characteristics. Some methods are capable of generating high resolution saliency maps

while others have an excellent runtime speed. A correct choice of saliency method will

depend on the application domain.

In the following sections, we explore the main characteristics of each method regard-

ing runtime speed, resolution of generated saliency map and search scale selection. To

facilitate comparison we define the following shorthands for each method:

1. Itti’s Method (IT) [Itti et al. 1998], see Section 2.1.1.

2. Graph-based (GB) [Harel et al. 2007], see Section 2.1.1.



34 Chapter 3. Saliency analysis

Method IT GB SR FT AC CA LC HC

Time (s) 0.611 1.614 0.064 0.016 0.109 53.1 0.018 0.019
Code Matlab Matlab Matlab C++ C++ Matlab C++ C++

Table 3.1: Comparison of runtime speeds for saliency detection over Achanta et al. dataset
[Achanta et al. 2009]. Results taken from [Cheng et al. 2011a], which used a dataset
where most images have size around 400 by 300 pixels

3. Spectral Residual (SR) [Hou & Zhang 2007], see Section 2.1.3

4. Achanta’s Method (AC) [Achanta et al. 2008], see Section 2.1.2

5. Frequency-tuned saliency detection (FT) [Achanta et al. 2009], see Section 2.1.2.

6. Context-Aware (CA) [Goferman et al. 2011], Section 2.1.4

7. Luminance Contrast (LC) [Zhai & Shah 2006], see Section 2.1.2.

8. Histogram Contrast (HC) [Cheng et al. 2011a], see Section 2.1.2.

9. Phase-only Fourier Transform (PFT) [Guo et al. 2008], see Section 2.1.3

3.1.1 Runtime speed

Saliency detection methods are normally built to be fast. One motivation for such design

is related to their use in unsupervised object detection.

Recent evaluations on runtime speed by [Cheng et al. 2011a], presented in Table 3.1,

have shown subsecond results for most methods when processing (mostly) 400 by 300

images, except for CA. Were the fastest methods are, in order: FT, LC, HC and SR.

Moreover, as PFT executes faster than SR, as seen in [Guo et al. 2008], it also can be

considered one of the fastest methods.

In part, speed variations between methods can be attributed to differences in environ-

ment, where C++ implementations are, in general, faster. However, manual inspection

of saliency approaches indicates that methods with worse runtime indeed seem to depend

on more intensive algorithms.

3.1.2 Saliency map

Saliency detectors output a “saliency map”, which is an intensity image where brigther

values indicates stronger saliency. Some methods, such as IT, GB, SR and PFT generate
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Method IT GB SR FT AC CA LC HC

Resolution S/256 S/64 64x64 S S. 15
100

S S S

Table 3.2: Resolution of generated saliency map when compared to the original image S.
Part of the data is from [Achanta et al. 2009].

(a) Original (b) IT (c) GB (d) SR (e) AC (f) FT

Figure 3.2: Some limitations of saliency methods analysed in [Achanta et al. 2009]. Lim-
itations range from non-uniform object highlighting and highlighting only salient regions
smaller than a certain filter size.

low resolution saliency maps, that is, intensity images smaller than the input image.

Moreover, according to [Achanta et al. 2009], due to extreme downsizing some methods

do not generate proper object boundaries on saliency maps, particularly GB and IT.

Methods that generate a high-resolution saliency map have, overall, obtained better

performance in segmentation of images on tests found in [Cheng et al. 2011a] on the

dataset created by Achanta et al.; examples of such good performing methods are HC,

FT and AC. An overview of the generated saliency map resolution is summarized on table

3.2.

Another type of flaw in saliency maps is that some detectors cannot uniformly highlight

the entire salient object, being SR an example. This flaw is caused by the limited range

of spatial frequency that remain from the original image when computing the saliency

map [Achanta et al. 2009]. Some differences in the generated saliency can be perceived

over Fig. 3.2, like variations on saliency map resolution and also how much of the object

is highlighted.
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Figure 3.3: General architecture of IT. The input images are separated into color, orienta-
tion and intensity maps over several scales. The maps are combined using a normalization
operator generating the final saliency map. Image taken from [Itti et al. 1998].

3.1.3 Selection of search scale

When searching for salient objects one might desire for only salient regions of a certain

size. Fine-grained control over search scale can help attenuating regions with an undesired

size from the saliency map.

Saliency detection using IT and GB combines information from multiple scales into a

single saliency map using a normalization operator N(·). Particularly, the saliency map

generation overall architecture for IT is shown in Fig. 3.3. However, some methods,

such as [Rutishauser et al. 2004], calculate saliency with IT but avoid the normalization

operator, processing each scale separately. This provides information about salient objects

and their scale, avoiding potential loss of information.

In contrast to IT and GB, the SR method empirically defines a search scale based on

common object sizes. For general-purpose object detection, this scale was found to be

the best compromise between saliency region detection and error rates. The scale in SR

is controlled through adjusting the input image size, as shown in Fig 3.4, where smaller

images attributes more saliency to bigger objects. This characteristic is also shared with
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Figure 3.4: Example of scale control through image resizing in SR. In the larger images
smaller objects are more salient. Conversely, as the image is downsampled bigger, objects
start attracting more attention. Image taken from [Hou & Zhang 2007].

the PFT method.

Some other methods do not provide a direct way to control saliency search scale, such

as FT, HC and LC. However, it is worth noting that, even in these cases, changing the

image size affects the final saliency map, but how this correlates to changes in search

scale is not clear. In contrast, CA combines information from multiple scales with scale-

invariant information, one such information is the result from a face detector.

3.1.4 Saliency for faster detection

Our work aims at reducing a detector search space using saliency detection, in a certain

way that some characteristics for saliency detectors are important:

1. Fast saliency detection, as calculating the saliency represents an additional process-

ing overhead for object detection;

2. Scale selection is required as to search in the same scale as the object detector. This

avoids polluting the saliency map with information from undesired scales;

3. Good saliency detection over cluttered images. Most saliency detection methods

have been tested in datasets where there is a clear salient object in a non-cluttered

background;

4. Acceptable resolution of saliency map. By generating a saliency map with too low

resolution may affect search space reduction.
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Runtime speed requirements are an important consideration. In case the saliency

detector is too slow, it will not effectively reduce object detection time. This requirement

greatly limits the use of IT, GB and AC method, where average detection times in a single

image of 400 by 300 is greater than half a second, which is at least nine times worse than

SR, FT, LC methods.

Concerning fine control over scale selection, both IT, GB, SR, CA can be modified

to suit this purpose. Conversely, in methods like FT, LC and HC, scale selection seems

to be harder to directly control. However, even in methods were scale selection is not

explicitly controlled, changing input image sizes does change the generated saliency map

in an unspecified way.

Performance metrics over non-cluttered images have to be analyzed in depth, as results

may vary according to the dataset of choice and type of object. However, the HC method

can be disregarded from further consideration in the scope of search space reduction, as it

was described to perform better on images with a clear salient object and mostly uniform

background.

The resolution of generated saliency map is less of a concern in our application. As

high-resolution operations such as segmentation, which requires fine-grained edge infor-

mation, are not used in our method.

Considering the requirements of speed, scale selection, robustness and resolution, the

SR presents a good balance between the desired properties. In the next section, we provide

an in-depth evaluation of SR method in order to understand its origin and characteristics.

3.2 Spectral residue

Approaches for salient region detection are commonly focused on properties common

to objects. However, in spectral residual (SR) [Hou & Zhang 2007], properties of the

background are explored instead. In contrast to most approaches for salient detection,

SR is based on information extracted from the frequency domain.

In the following sections, we discuss some properties of natural images on frequency

domain, the law used by SR and also its known limitations.

3.2.1 Statistical properties of natural images

Natural scenes are not random. They contain a particular structure and represent

only a fraction of the actual image space [Ruderman & Bialek 1994]. Furthermore, in
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(a) Single image (b) Ensemble of over forty images

Figure 3.5: Power spectrum averaged over orientations (thick lines) and also their linear
fits (thin lines). In these images p denotes log frequency and S(p) the log amplitude over
frequency. Images taken from [Hsiao & Millane 2005].

[Ruderman 1994] it is stated that natural images cannot be properly defined from any

known elementary distribution commonly used in image models, as Gaussian, for example.

Understanding properties of natural images allows one to create compact image repre-

sentations and to reduce effects of noise [Ruderman 1994]. One of the most widely known

properties of ensemble of natural images is the power-law scaling. This property dic-

tates that the power spectrum of a natural image ensemble (averaged over orientations),

E{A(f)}, follows a distribution given as

E{A(f)} ∝ 1/f , (3.1)

where E{A(f)} is the mean of amplitude over frequency f . Scale invariance properties

such as that implies that image statistics do not change with different angular scales

[Ruderman 1994]. Thus, independent of a camera focal length, the image properties will

be retained as long as the image is multiplied by a proper constant value so that the

modified image statistics are identical to the original image (self-affine). In practice, scale

invariance indicates that objects in natural images are not more likely to appear in a

particular size (angular scale), that is, there is no prevalent object size.

The formulation can be visually perceived when the amplitude spectrum from an

ensemble of natural images is presented on a log-log scale. In this case, the amplitude

spectrum, averaged over orientations, is approximately a straight line, as show in Fig.

3.5.
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Figure 3.6: First row shows samples of the image ensemble. Second row shows differences
in generated log spectrum representation generated with ensembles of different sizes. Im-
age taken from [Hou & Zhang 2007].

3.2.2 Exploring 1/f law

The 1/f law applies only to an ensemble of natural images, demonstrated in Fig. 3.6,

Hou and Zhang theorized that the statistical singularities found in the power spectra of

individual images are linked to presence of proto-objects. In other words, regions that

are more likely to contain objects are generally responsible for most of the perturbations

over the smooth curve of the power spectra.

Commonly, an ensemble of image power spectrum is represented in log-log format, as

described in Section 3.2.1. However, as SR works on individual images, the log spectrum

format was used instead. The main reason for using log spectrum is that, for an individual

image, the log-log spectrum is not well-proportioned along the frequency domain (too few

samples on low frequencies), suffering from noise. The graphical differences between the

log-log spectrum and the log spectrum are summarized in Fig. 3.7.

In order to detect the location of statistical singularities of an image, the concept

of spectral residue was created. Spectral residue, depicted in Fig. 3.8, is calculated by

subtracting a convoluted log spectrum from the original log spectrum, as

B = L(A)− hn ∗ L(A) , (3.2)
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Figure 3.7: Comparison between log spectrum and log-log spectrum, where the first image
is an average of 2277 natural scenes. Image taken from [Hou & Zhang 2007].

where L(A) is the log amplitude of the Fourier domain and hn is a 2D convolution

filter of size n× n. The convolution filter hn is defined as

hn =
1

n2


1 1 . . . 1

1 1 . . . 1
...

...
. . . 1

1 1 . . . 1

 (3.3)

This formulation intends to capture regions which strongly deviate from the expected

1/f distribution, or in other words, that jump out of the smooth log spectrum curves

[Hou & Zhang 2007]. After calculation of the spectral residue, the saliency map, SSR, is

generated using

B = log(A(f))− hn ∗ log(A(f)) , (3.4)

SSR(x) = g(x) ∗ F−1[exp (i · P (f) +B(f))]2 , (3.5)

where F−1 denotes inverse Fourier transform, P (f) represents the phase information

extracted from the frequency domain and g(·) is a 2D Gaussian filter.
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(a) Input image (b) Log spectrum curve

(c) Spectral average curve (d) Spectral residue curve

Figure 3.8: Calculation of spectral residue: (a) input image, (b) calculated log spectrum,
(c) convoluted log spectrum, (d) spectral residue. The residue is obtained by subtracting
the log spectrum from the residue. Image taken from [Hou & Zhang 2007].

From the generated saliency map, actual proto-objects are segmented using a per-pixel

thresholding. In this case, a pixel is considered salient iff

O(x) =

1 if SSR(x) > threshold

0 if otherwise
, (3.6)

where SSR(x) is a pixel of the saliency map. For SR, the threshold = E(S(x)) ∗ 3, that
is, three times the mean saliency intensity of the saliency map. Using these properties

actual regions of interest are selected.

3.2.3 Known issues

Despite the advantages of the spectral residue, some works have demonstrated SR limi-

tations. Among these limitations, the SR performance in general purpose saliency detec-

tion on images where there is a clear and distinctive salient object was among the worst

when compared to other state-of-art methods. One such comparison was presented in
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[Cheng et al. 2011a], where SR was the second worst. In [Achanta et al. 2009], the SR

was also among the worst performing methods.

The most likely explanation for such low performance is scale selection. In SR the

scale of search is controlled by the image size. As such, a constant image size is defined

based on common salient object sizes over several images (as described in Section 3.1.3).

This excludes objects that are bigger or smaller than the scale of search. This means that

for general purpose saliency detection other methods are most likely a better choice.

Another issue is that, in contrast to what Hou and Zhang theorized, the most

important information for SR saliency detection is the phase information extracted

from the frequency domain, not the spectral residue. The importance of phase in-

formation was highlighted in [Oppenheim & Lim 1981], and in the context of saliency

detection this was proven in [Guo et al. 2008], where a comparison was made be-

tween SR and PFT, were the latter is similar to phase-only filtering (described in

[Horner & Gianino 1984, Chen et al. 1994]), obtaining similar results to the original SR.

Phase information can be extracted by setting frequency domain amplitude information

to a constant non-zero value [Guo et al. 2008]. In this way, saliency can be calculated

with

D(f) = F(I(x)) (3.7)

P(f) = P (D(f)) (3.8)

SPFT(x) = g(x) ∗ F−1[exp (i · P(f))]2 (3.9)

where F denotes the Fourier transform, g(·) is a 2D Gaussian filter and P(f) represents

the phase information of the frequency domain. In most cases, SR can be replaced with a

PFT with similar results. This procedure does not significantly affect saliency detection

performance in an observable manner, as shown in Fig. 3.9. Although PFT and SR are

almost completely interchangeable, our work will build upon SR as it is a more widely

used method. Furthermore, it is the method used for saliency method benchmark in many

recent works, such as [Achanta et al. 2009, Cheng et al. 2011a].

Saliency calculation in SR and PFT is always done with gray-scale images, which

discards color information that could be used to improve saliency detection. Further-

more, the lack of support for motion information can reduce performance in video frames,

when saliency can be originated from an object motion and not its inherent character-

istics (shape, color, edges). Some saliency methods have been built to capture motion
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Figure 3.9: Comparison of PFT with SR. Image taken from [Guo et al. 2008].

information and combine it with bottom-up image information for detection of important

regions, as [Zhai & Shah 2006] and [Guo et al. 2008].

3.3 Closure

Saliency methods relies on different techniques and have different application domains.

The main differences between the methods can be divided into four categories: runtime

speed, saliency map resolution, search scale selection and intended use.

Considering the task of faster object detection, we have chosen to use spectral residue

analysis in order to speed up image object detection. This choice was made based on the

possibility of adding fine control of scale selection, acceptable runtime speed and saliency

map resolution. The original formulation of SR detects salient objects over a single search

scale, which was chosen based on common object sizes. This default scale is not suitable

for window selection because an object detector have to search for objects over multiple

scales. To this end, in following chapters, SR will be modified to allow proper scale

selection.

To show that SR was indeed the best choice for the task of window selection, compar-

ison against other saliency methods is provided during result analysis of our solution. A

throughout evaluation of SR will be presented in following chapters, in order to evaluate

the detector behavior when associated with the use of this saliency method. Even though

some SR limitations could negatively affect performance, such as the use of gray-scale

images, we found that none of them represent a hard barrier for use of SR in the context

of faster object detection.

Our structure, which we will present in Chapter 4, is called multi-scale spectral residue

(MSR) and uses saliency saliency detection over multiple scales to select which windows

will be processed by a full-fledged object detector. This modification required changing



3.3. Closure 45

SR from using a fixed image resize, to one that depends on the current detector search

scale. This structure is described in details over the following chapter.
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When searching for objects in images using a sliding window approach, each unique

window position is evaluated by the object detector. However, an object of interest

is normally present in only a small fraction of the input space. Thus, an expensive

object detection is applied disregarding the probability of a region containing the object

of interest.

Saliency detection methods usually associate a measure of global or local importance

for a image region. Information about a region importance can be used to choose whether a

object detection will be applied in a given window. Discarding windows before detection

can reduce the time required to process an image. Furthermore, discarding detection

windows based on saliency information can avoid false positive detections. On the other

hand, this approach may inadvertently discard windows that contain the object of interest,

generating false negatives. MSR aims to harness the advantages of window selection, while

avoiding most of its pitfalls. An overview of MSR structure can be seen in Fig. 4.1.

Among the possible salient methods available, two requirements are important for use

in the context of region selection: speed and robustness. In this case, speed relates to how
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Figure 4.1: Overview of MSR structure for window selection.

fast saliency is calculated, and robustness to how well the saliency can discard regions

without missing objects. To reach the best possible results for those requirements, we

were motivated by the idea of spectral residue analysis for window selection, which we

call Multi-scale Spectral Residue (MSR).

The SR is a fast and efficient method for computing salient regions. However, some

limitations of its original formulation make its use inadequate for multi saliency detection

on cluttered images. These are:

1. Objects are searched in a single scale. SR resizes images to a fixed size – 64 by 64

(or the closest resolution that preserves aspect ratio). Restricting the scale of search

limits the size of objects that can be found;

2. The threshold to decide which pixels of the saliency map are actually salient is

defined as kSR = 3 ·E(S(x)), or three times the mean saliency map, S(x), intensity.

Such formulation may incorrectly regard objects in cluttered images (many objects)

as non-salient. This happens because with too many salient objects the threshold

k becomes too large, excluding most regions;

3. Regions are chosen based on per-pixel saliency value, which may partially exclude

objects that have a strong intra-object saliency variation.
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Figure 4.2: Differences between original SR pixel selection and MSR window selection.
From left to right: input image, SR per-pixel selection, MSR per-window selection

The aforementioned points were overcome in MSR, and they are detailed in the fol-

lowing sections.

4.1 Selecting regions

After calculating the saliency of an image, SR chooses salient pixels based on whether each

individual pixel x is greater than three times the mean image saliency intensity, that is,

x > 3 ·E(S(x)). There are two problems with this formulation: (i) due to object saliency

variations along its length, objects may be only partially salient, creating incomplete

object selection; (ii) using the kSR as threshold on scenes with many objects (cluttered)

can set the threshold to a value too high to include all image objects.

To solve these issues, the first step is exploring a per-window region selection. When

sliding over the image, the average saliency of the pixels inside a window will be calcu-

lated and compared against the threshold. In case a window mean saliency is greater than

the threshold, it will be selected for object detection. Using an entire window compen-

sates object saliency variation, either selecting the entire window or discarding it. The

differences between per-pixel and per-window region selection are illustrated in Fig. 4.2.

Using a rectangular window for saliency calculation has many advantages. Among

these is the possibility of using integral images [Viola & Jones 2001] to calculate mean

saliency of a window in O(1). This is beneficial, as calculation of an integral image

requires only an initial operation with linear complexity, that is, O(n). This runtime speed

advantage when compared to a normal approach without integral image is demonstrated

in Fig. 4.3.

Another advantange is that common detectors, such as HOG, Haar-like features, also

depends on a rectangular window of fixed-size for detection, this allows a one-by-one

relation between the salient window selection and the object detection.

The window size for mean saliency calculation is defined to have the same size as the
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Figure 4.3: Difference of runtime speed required to select windows for an entire image
octave using MSR with and without integral images for window saliency mean calculation.

object detector window. However, reducing the window size for mean saliency in some

circunstances can improve saliency performance. One such case is when the classifier was

trained with context from the object’s surrounding region, such as ground context for

person in INRIA [Dalal & Triggs 2005] and NICTA [Overett et al. 2008]. As surrounding

context is commonly non-salient, the saliency mean may be calculated using a window

smaller than the detector window.

4.2 Saliency over multiple scales

A sliding window based object detector searches for objects with a fixed size window. To

find objects of different sizes, the image is progressively downsampled using a function such

as Ii+1 = R(Ii, s), where R represents the resize function, Ii denotes the i-th image octave

and s the resizing factor. This downsampling allows a fixed-size window to encompass

objects with different sizes. Our objective is to provide at each scale Ii a saliency map

tuned to the search scale of the object detector.

Saliency detectors usually combine information from multiple scales to score re-

gions based on their visual importance. Particularly, both [Itti et al. 1998] and

[Harel et al. 2007] use a normalization operator to combine information from multiple

visual scales into a single saliency map. This is not adequate for scale-specific saliency
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(a) SR with image at 15% of its size (b) SR with image at 7% of its size

Figure 4.4: Differences in saliency at multiple scales. In the left image, SR was calculated
in 15% of the original image size, generating strong reactions on mostly small objects;
in the right, using 7% of the original image size, bigger objects were also selected. The
image reduction examples demonstrate how the image size influences on the scale of
saliency detection, which will be tuned to best select objects in a given octave.

detection as information from the final saliency map will be composed with information

from multiple scales. In contrast, SR searches for interesting regions at a single scale. The

scale of search in SR is defined by the input image size. As the image gets smaller, the

search scale focuses more on larger objects. This can be seen in Fig. 4.4 where using a

smaller image allows for bigger salient regions to be detected. A specific value for search

scale was defined based on estimation of object size over common visual conditions – the

closest possible resolution to 64 by 64.

Although the original SR formulation is an adequate choice for general purpose salient

detection, it is not suited for integration with a sliding window object detector. This is a

consequence of its fixed scale search, which does not select salient region that are aligned

with the object detector search scale. Thus, we attempted to find, at a given image octave

Ii, a resizing factor β that allows for SR to search for salient objects at the same scale

as the object detector. That is, before a sliding window is applied at a particular image

octave Ii, a resizing function Z(Ii, β) is applied and salient detection performed. The

generated saliency map is then used to calculate a quality value f(w) for each window w,

and to decide whether the object detector should be used or not.

Resizing the image using β has an additional advantage of reducing the computational

complexity of saliency calculation. Thus, a smaller β induces a smaller overhead for

saliency calculation. However, the choice at a specific value for β depends on different

factors, such as object class, saliency method and window size. In Section 4.3, we define

performance metrics that will help with choosing a proper value for β on Section 4.4.
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4.3 Quality function threshold

Proper evaluation of window selection impact on detector performance was done by means

of an analysis of the window selection rate (WSR) and saliency false negative rate (SFNR).

WSR denotes the number of windows selected for further processing, while SFNR repre-

sents how many objects the detector failed to recognize after MSR pruning.

Both WSR and SFNR depend on a threshold k which represents a minimum score

for a window to be selected for actual object detection. Thus, given that W is the set of

all windows generated from sliding on the entire collection of images at every scale and

M the set of all objects of interest from this same collection of images, we can calculate

the trade-off between WSRk and SFNRk in a five-step process. First, we define the set of

selected windows Sk as

Sk = {w ∈ W | f(w) ≥ k} , (4.1)

where f(w) is the quality value of a window w and k is the threshold for window selection.

Given Sk, it is possible to calculate the window selection rate with

WSRk =
n(Sk)

n(W )
, (4.2)

where n(·) denotes cardinality of a set. To calculate the SFNRk one should enumerate for

each object j ∈ M the number of windows in which the object was correctly matched,

Ck,j, given by

Ck,j = {w ∈ Sk | o(w) = j} , (4.3)

where o(w) is a function that, in case an object exists at window w, and this is correctly

classified by a detector, returns the matched object from set M ; otherwise o(w) returns

any element /∈ M. From that, it is trivial to find the set of objects detected, Fk, defined

as

Fk = {j ∈ M | n(Ck,j) ≥ 1} . (4.4)

Finally, in order to calculate how many miss detections were caused by the saliency

method (SFNR), we used

SFNRk =
n(Fkmin

)− n(Fk)

n(Fkmin
)

, (4.5)
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Figure 4.5: Trade-off curve for person detection using different β values. When the curve
is closer to the origin it is better.

where kmin is the minimum threshold value, which guarantees Skmin
= W . Thus, to

generate a full trade-off curve. This process is repeated for each k ∈ K, where K is the

set of unique window scores.

4.4 β and k values

The value of β controls the search scale of the saliency detector. Thus, each object class

may have a different optimal β value, varying according to the characteristics of the

object. In particular, we found that person detection benefits more from salient region

information at β value of 0.15 – or 15% of the current octave size. This size was found for

person objects over the LabelMe [Russell et al. 2008] dataset, further details are shown

in Chapter 5. Still in the context of person detection, Figure 4.5 shows the trade-off of

WSR and SFNR for different values of β. This trade-off indicates that the value 0.15

for β allow the saliency search scale to better match the search scale of the detector for

person objects. In practice, this allows more windows to be discarded without additional

false negative detections.

Using only single scale, as in the original SR, would result on a smaller footprint for

saliency detection, at the cost of much reduced window selection performance. However,

as our multi-scale approach had such superior performance in comparison to single scales
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Figure 4.6: Comparison between multi-scale analysis and using the same saliency map
for all scales. Methods presented are MSR and LC [Zhai & Shah 2006]. When the curve
is closer to the origin it is better.

methods, the additional cost of recalculating saliency for each scale is offset by the greater

number of windows discarded, as can be noted in Fig. 4.6. This figure shows that

saliency analysis over multiple scales has, for all threshold values (and fixed β), a better

performance when compared to single scale analysis.

On the following sections, to facilitate analysis of results, we have two values for

threshold k which, in average, are equivalent to operating points 20% and 30% of WSR. In

this manner, at 20% of WSR, the detection is expected to run five times faster, generating

a high false negatives, while at 30% of WSR the algorithm executes over three times faster

but generating very few false negatives. The actual runtime speed impact, taking into

account the overhead of saliency calculation, is presented in Section 5.1.4.

The choice of threshold value is important, as choosing a threshold that is too high will

most likely inadvertently discard windows that contain an object. Conversely, choosing a

too low threshold will discard too few windows. These possibilites are depicted in Figure

4.7.
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(a) 10% WSR (b) 20% WSR (c) 30% WSR

Figure 4.7: Different regions selected depending on threshold value.

4.5 Image pre-processing

Preliminar analysis of the saliency false negatives demonstrated that most were effects of

bad illumination, clothing with darker tones and distance from the camera. These char-

acteristics reduced the difference from an object to its background, negatively impacting

its saliency.

The first attempt to tackle the aforementioned problem was based on contrast stretch-

ing, which normalizes the gray-level intensity distribution in the entire zero and one range.

This is done through a linear normalization of an image I, using

IN = (I −min(I))
255− 0

max(I)−min(I)
. (4.6)

Stretching the intensity distribution did not improve algorithm window selection perfor-

mance (nor degraded it). Therefore, we supposed that most photographs, taken in natural

conditions, already include an overall good gray-level intensity distribution.

Instead of normalizing gray-level intensity, our second attempt used contrast normal-

ization by histogram equalization (HE), detailed in Appendix A. As such, this algorithm

was applied in an attempt to correct low contrast caused by poor illumination.

The histogram equalization is applied after β scaling and image conversion to gray-

level. This equalization requires calculation of the image pixel frequency histogram. This

process was used to provide a better trade-off with minimal extra runtime cost, as it is

calculated in the image generated after β scaling. Adding this equalization, in our tests, it

provided 8.7% of SFNR at 20% of SWR and also 2.9% SFNR at 30% SWR. This solution

was used in the first iteration of our method, presented in [Silva et al. 2012]. On the

remaining of the current section we evaluate other normalization approaches and their

impact on window selection performance.

Another approach to image pre-processing is based on Adaptive Histogram Equaliza-
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Method Block Size N. Bins WSR 20% WSR 30%

HE - - 08.70% SFNR 02.90% SFNR

AHE 48 by 48 16 06.61% SFNR 03.17% SFNR
AHE 48 by 48 32 06.61% SFNR 03.70% SFNR
AHE 48 by 48 64 05.55% SFNR 02.64% SFNR
AHE 48 by 48 96 05.55% SFNR 02.64% SFNR

AHE 64 by 64 16 07.93% SFNR 05.55% SFNR
AHE 64 by 64 32 07.93% SFNR 05.55% SFNR
AHE 64 by 64 64 07.93% SFNR 05.02% SFNR
AHE 64 by 64 96 05.82% SFNR 02.64% SFNR

Table 4.1: Window selection performance over different parameters for AHE algorithm
and compared to HE. Best results for each section are marked in bold

tion (AHE) algorithms [Pizer et al. 1987]. Specifically, both AHE and the contrast limited

version (CLAHE) were tested. When certain regions are darker or more illuminated than

the rest of an image, adaptive methods are capable of a better contrast enhancement in

comparison to global methods, such as histogram equalization. Additional information

about these methods can be found on Appendix A.

Some adjustments were made to MSR structure to allow use of AHE and CLAHE

contrast normalization methods. These adaptive contrast normalization methods divide

an image into several distinct regions (or blocks). However, to avoid partial blocks at

image edges, the input image is resized to the nearest upper multiple of block size:

b(x,m) = x+m− (x mod m) , (4.7)

where x denotes the size of an image dimension (width or height) and m the block size.

Our algorithm is tested with block size of 48 and of 64. Furthermore, another parameter

required is the number of bins for each block histogram. In our tests, we evaluate as

possible the values of 16, 32, 64, 96. Henceforth, the AHE was applied over several

images in several configurations, and the results were summarized in Table 4.1. The

same process was repeated with CLAHE, but limited to the best results of AHE (from

Table 4.1), over different contrast limit values. In Table 4.2, the results for CLAHE are

presented.

The CLAHE method achieved better results (see Table 4.2) in window selection per-

formance, when configured to use a block size of 48 by 48 with 96 histogram bins and 0.3

contrast normalization. The contrast limit avoids over-amplification of noise, common in



4.5. Image pre-processing 57

Method Block Size N. Bins Contrast Limit WSR 20% WSR 30%

HE - - - 08.70% SFNR 02.90% SFNR
AHE 48 by 48 96 - 05.55% SFNR 02.64% SFNR
AHE 64 by 64 96 - 05.82% SFNR 02.64% SFNR

CLAHE 48 by 48 96 0.3 04.23% SFNR 01.58% SFNR
CLAHE 48 by 48 96 0.6 04.23% SFNR 02.38% SFNR
CLAHE 48 by 48 96 0.9 05.82% SFNR 03.17% SFNR

CLAHE 64 by 64 96 0.3 05.29% SFNR 02.11% SFNR
CLAHE 64 by 64 96 0.6 04.76% SFNR 02.91% SFNR
CLAHE 64 by 64 96 0.9 06.87 % SFNR 02.91% SFNR

Table 4.2: Window selection performance over different parameters over a person dataset
for CLAHE algorithm compared to HE and AHE. Best results for each section are marked
in bold.

HE and AHE methods. The limit itself defines an upper bound to how much the con-

trast in a pixel neighborhood can be amplified. Thus, a limit value of one would indicate

no contrast limiting, and as it approaches zero only smaller contrast amplifications are

allowed. For further details about CLAHE parameters see Appendix A.

A performance overview of best configuration for each method is presented in Fig.

4.8. These results indicate that CLAHE methods are best suited to enhace MSR window

selection performance within the operating points of 20% and 30% of SWR. However,

other operating points or objects may require different approaches.

It is important to note that CLAHE operate over image blocks, while HE operate

over the entire input image. Thus, combining both local and global approaches may yield

superior window selection performance. To this end, we test how performance is affected

when both CLAHE and HE are applied simultaneously over the image. The results,

presented in Table 4.3, indicate that CLAHE and HE are better at window selection

performance than each method in isolation, with 3.34% of SFNR at 20% SWR and 1.05%

of SFNR at 30% SWR.

A proper choice for contrast normalization depends not only on window selection

performance considerations but also on runtime speed requirements. Evaluation of each

method impact on saliency detection speed is measured in Table 4.4. These experiments

have indicated that for smaller resolutions the runtime overhead of contrast normalization

is miminal. However, as image resolution grows, the overhead for HE, AHE and CLAHE

methods also increases.

Images, that even after β scaling are very large, may impose a large runtime overhead.
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Figure 4.8: Comparison of best results in terms of window selection performance versus
false negatives generated over a person dataset. CLAHE is presented with 0.3 as contrast
limit.

Method Block Size N. Bins Contrast Limit WSR 20% WSR 30%

HE - - - 08.70% SFNR 02.90% SFNR
CLAHE 48 by 48 96 0.3 05.82% SFNR 03.17% SFNR
CLAHE 64 by 64 96 0.3 05.29% SFNR 02.11% SFNR

CLAHE + HE 48 by 48 96 0.3 03.43% SFNR 01.05% SFNR
CLAHE + HE 64 by 64 96 0.3 03.17% SFNR 01.05% SFNR

Table 4.3: Results of window selection performance from a combination of both CLAHE
and HE methods.

Thus, a possible solution to this effect is to split an image into several sub-parts, and

each one can be normalized independently. This may, however, introduce fragments in

the edges between regions.

Judging whether the overhead of contrast normalization is acceptable or not will de-

pend on the choice of object detector. In this case, a necessary condition for MSR ef-

fectiveness is that TMSR(w) << Td(w), were TMSR(w) is the time required by saliency

detection (with normalization) divided by total number of windows, and Td(w) is the time

required by a detector to process a window.

Our conclusion is that the enhanced image contrast improved the results at window

selection. This implies that spectral residual relies on high contrast regions for some of

its saliency detection. Thus, contrast equalization shows itself to be an important step
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Saliency Runtime (s)

Resolution HE Contrast
Stretching

AHE CLAHE None

1600 by 1200 0.0880 0.0870 0.0863 0.0863 0.0847
2048 by 1536 0.4618 0.1209 0.1449 0.1453 0.1203
2592 by 1944 0.6900 0.1400 0.7000 0.6800 0.1400

Table 4.4: Comparison of runtime speed differences for saliency detection (MSR with β
scaling) using different contrast normalization approaches

Figure 4.9: MSR window selection procedure (parameters for person detection)

for MSR. Figure 4.9 summarizes all the important steps in MSR.

4.6 Closure

This chapter described overall characteristics of MSR. This method was created to enable

faster object detection, avoiding the use of computationally expensive object detectors in

regions with low probability of containing objects. To achieve such result, our method

combines techniques such as saliency detection, contrast normalization, integral images
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and object detection. Moreover, concepts of WSR and SFNR are also presented to allow

clear analysis of performance variations in Chapter 5.

Saliency detection was enhanced by combining contrast normalization techniques.

Best results were achieved through combined CLAHE and HE methods. Additionally,

runtime differences between different techniques were evaluated and compared. These

results have indicated that SR saliency detection relies on edge information for proper

saliency detection, information which can be exploited in future works.
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Proper evaluation of how well search space reduction is performed in a sliding window-

based detector is necessary, as this helps to gauge MSR usefulness. This way, several points

must be evaluated:

(i) Compare the detection performance considering several saliency detection methods

using the same sliding window parametrization in a multi-scale analysis;

(ii) Analyze MSR scalability with respect to detection, i.e., how it behaves on different

image resolutions;

(iii) Quantify how MSR affects a detector’s receiver operating characteristic (ROC) curve

with respect to a regular sliding window;

(iv) Measure the impact on detection runtime speed with different parameters;

(v) Evaluate the performance for different object classes.

To determine each of the the aforementioned items, two datasets have been chosen:
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Figure 5.1: Sample images of the dataset created from the LabelMe repository.

Figure 5.2: Sample images from the Pascal VOC 2007 dataset.

• 330 images1 extracted from LabelMe repository [Russell et al. 2008] containing per-

sons in several different environments, and with image sizes ranging from 320 by

240 to 2592 by 1944. Additionally, the dataset encompasses several environments,

including city, snow, forest and river, where each selected scene contains at least one

person. Examples can be seen in Figure 5.1. Even though other datasets could be

used, such as INRIA, the LabelMe provides scenes from several authors in a wide

range of situations, which allows for a more randomized image sampling;

• Pascal VOC 2007 dataset, containing 4952 images with twenty object classes. Ex-

ample images from that dataset can be seen in Figure 5.2.

Analyses of items (i), (ii), (iii), (iv) are done with the dataset extracted from LabelMe.

In these cases, the persons are detected using MSR and a combination of histogram of

oriented gradients (HOG) [Dalal & Triggs 2005] and Support Vector Machine (SVM). The

reason of using HOG/SVM was not only because it is a state-of-the-art detector, but also

to facilitate comparison with other future search reduction methods, since its source code

is publicly available. Our HOG/SVM detector was trained using a person dataset distinct

from the one created with images from LabelMe. Additionally, the detector was set up

with window size of 64 by 128 pixels, a stride of 8 horizontal pixels, and 16 vertical pixels,

and image resizing rate of 0.96, for each octave.

1The images and annotations are available for download at goo.gl/pmuEw
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Additionally, for (iii) we also include a comparison of detection performance against

a standard Viola Jones object detector [Viola & Jones 2001]. This is done to help under-

stand how MSR interacts with different detection approaches. This detector was config-

ured with window size of 56 by 112, and the same stride as used by the HOG detector.

It is noteworthy that, for analysis (i), two state-of-the-art saliency methods have not

been included – [Cheng et al. 2011b] and [Goferman et al. 2011]. The former, because the

saliency detection is concentrated mostly on images with a single and clear salient object;

the latter, because of its very slow runtime speed. In (ii), we examine how MSR perfor-

mance changes over different image resolutions and how each image octave contributes

to its results. This experiment is important when recent increases in availability of high

resolution images are considered. In (iii), we built a ROC curve to show the effects of

MSR on a person detector at different WSR configurations in comparison to a normal

sliding window. Moreover, in (iv), we evaluate if the number of windows discarded before

detection is sufficient to compensate for the additional processing required by MSR. For

(v), we use Pascal VOC 2007 dataset to see which object classes are best suited for MSR.

The resulting MSR performance for each class shows which objects adapt better to MSR

structure for window selection.

5.1 Experiments

In this section we describe experiments performed to evaluate MSR overall performance.

Experiments (i-iv) which use LabelMe dataset are defined respectively in Sections 5.1.1,

5.1.2, 5.1.3 and 5.1.4. On experiment (v), presented on Section 5.1.5, results were collected

from the application of MSR for each class type of Pascal VOC 2007 dataset.

For practical reasons, we used on experiments (i), (ii) and (iv) only a HOG/SVM

detector while on (iii) a Viola Jones rejection cascade detector is also included.

Given the several possible configurations for our method, we define the following short-

hands as being configured with:

MSR defines our method configured to use both CLAHE (with block size of 64 by 64 and

96 bins) and HE. This choice was based on the good results obtained in comparison

to other configurations. This can be seen in Section 4.5.

MSR HE defines our method using only HE for histogram equalization, which was used

in the first iteration of our algorithm, presented in [Silva et al. 2012].
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Figure 5.3: Comparison of best results from different saliency methods applied to
guide multi-scale detectors, the methods are MSR (using CLAHE + HE), MSR HE
[Silva et al. 2012], FT [Achanta et al. 2009], GB [Harel et al. 2007], IT [Itti et al. 1998],
LC [Zhai & Shah 2006] and a baseline using random window scoring. The false negative
rate represents only objects that the detector would have matched if a regular sliding
window approach had been used. When the curve is closer to the origin it is better.

5.1.1 Comparison of saliency methods in a multi-scale structure

A comparison of MSR against other state-of-the-art methods in the same multi-scale

structure is presented in Table 5.3. As the results represent only the best configuration

of each method, a more detailed information is organized on Table 5.1 and 5.2.

In these experiments, both IT [Itti et al. 1998] and GB [Harel et al. 2007] were only

evaluated using the original octave size, with no β scaling, as these methods already

perform saliency detection at multiple scales internally. We also did not compare MSR

with the original SR [Hou & Zhang 2007] since the latter one was designed to operate on

a single image size.

The results indicated that MSR achieved superior performance on almost the entire

trade-off curve. Both MSR and IT became nearly equal in window selection performance

when operating under 2%WSR. However, even if it is necessary to operate with such small

WSR, saliency calculation speed of SR (from which MSR was inspired) still outperforms

IT in runtime speed, see Chapter 3 for runtime speed comparisons. In addition, false

negative rates at 20% and 30% of WSR were at least ten times better when compared to

other methods. Yet, at 50% of WSR, the SFNR is close to zero (less than 0.3%).

The MSR and IT methods had the best overall trade-off between WSR and SFNR.

Both SR and IT were among the worst on recent evaluation of general purpose saliency
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Table 5.1: SFNR for each method at 20% of WSR

β

Method 0.15 0.25 0.50 1.00

MSRa 03.17% 5.29% 9.25% 22.48%
LC 93.92% 93.92% 94.18% 94.43%
FT 87.83% 82.54% 76.46% 77.25%
GB - - - 47.09%
IT - - - 38.89%

aThe original SR was not used since it is not adequate
for searching in multiple scales, see Section 4.4.

Table 5.2: SFNR for each method at 30% of WSR

β

Method 0.15 0.25 0.50 1.00

MSRa 1.05% 1.85% 6.08% 14.81%
LC 86.24% 86.24% 85.98% 87.04%
FT 70.37% 64.29% 59.79% 62.69%
GB - - - 33.86%
IT - - - 23.81%

aThe original SR was not used since it is not adequate
for searching in multiple scales, see Section 4.4.

detection found in [Cheng et al. 2011a]. Some possible causes of this discrepancy are:

1. Saliency detection is done in a single scale in [Cheng et al. 2011a], while in our tests

the saliency was recalculated at every octave. This provided a better performance

for most methods;

2. Differences in scene selection. The dataset used in [Cheng et al. 2011a] was gath-

ered by [Achanta et al. 2009] with images containing mostly uncluttered objects

and natural background. In our tests, images were extracted from LabelMe

[Russell et al. 2008], wherein the images contain a wide range of locations and vary-

ing degrees of clutter;

3. Insufficient background information on some images (large objects).

MSR was also compared against simple random window scoring. This guarantees that

our approach for saliency detection is better than chance. The results indicate that MSR
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Figure 5.4: Comparison of window selection results using MSR (with HE + CLAHE)
against a cluttered and the complete LabelMe dataset.

greatly outperforms random window selection, showing that our approach does indeed

allow for better search space reduction.

Furthermore, a subset of 20 cluttered images from the LabelMe dataset were used to

evaluate variations on expected window selection performance, these results are presented

in Figure 5.4. The results showed that a variation in performance exists, showing that in

very cluttered scenarios window selection may not be as useful.

5.1.2 Scalability

We compared how well MSR could select image windows at different starting image res-

olutions in Fig. 5.5. From this information, we can conclude that increasing image size

allows for an even better trade-off between SFNR and WSR.

To further confirm the scalability of MSR on larger resolutions, we compared its ability

to eliminate windows at a fixed threshold in several octaves in Fig. 5.6, showing that larger

size images contributed for better WSR. In this test, the number of windows in each octave

was calculated using Eq. 2.13.
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Figure 5.5: Trade-off between WSR and SFNR at different starting resolutions. Aspect
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curve is closer to the origin it is better.

5.1.3 Detection performance

To measure the impact on MSR impact on detector performance, a ROC curve for the

detector with with and without MSR was compared. This curve is generated by sliding a

fixed size window along the image in several scales, and then applying non-max supression

(NMS) on the detected windows. The remaining windows (after NMS) are then compared

to the groundtruth using

A1 is true positive ⇐⇒ A1 ∩ A2

A1 ∪ A2

≥ 0.5 (5.1)

where A1 is a detected rectangle and A2 a groundtruth rectangle.

Comparison between a HOG/SVM object detector with and without MSR is presented

on Fig. 5.7a. In the tests, MSR at 20% of WSR provided greater TPR than regular sliding

window within the range of 0 and 1.48 of FPPI. At 30% of WSR and within the range of

0 and 1.98 of FPPI, our method also obtained larger TPR than a regular sliding window

approach. The maximum TPR of a regular sliding window was 0.71, while for MSR at

30% of WSR the maximum is 0.69. Even though the difference was small to match the

actual maximum TPR of a regular sliding window, MSR operated at least on 50% of WSR,

which still represents a twice as fast image processing with only a negligible performance

loss (less than 0.3%).
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Figure 5.6: Relation between number of windows at each image size and number of
windows selected for the detector. An operating point was selected at 20% of WSR (see
Fig. 5.3 for reference).

Some examples of positive and negative results at 30% of WSR can be found, respec-

tively, on Fig. 5.8 and Fig. 5.9.

Furthermore, to show that MSR can be used with different detectors, person detection

performance using Viola and Jones’ method with and without MSR was evaluated. In

Figure 5.7b the comparison of detector performance is showed. The ROC curve shows that

Viola and Jones’ detector, in average, makes more mistakes per image than a HOG/SVM

detector. Even so, MSR was able to reduce the number of false positives per image,

improving or at least maintaining performance within the range of 0 to 5.45 FPPI. Com-

pared to our method, that obtained 3.68 FPPI with 0.35 TPR, the regular approach was

only able to achieve this performance with 4.59 FPPI.

Another point is that the FPPI for the maximum TPR of each method was: (1) FPPI

6.81 with 0.38 TPR for the standard Viola Jones and (2) 5.45 FPPI but also with 0.38

TPR for our version combining Viola Jones and MSR. The actual difference between the

maximum TPR of both methods was of only 0.004033, showing that the number of lost

detections was negligible. Thus, in Fig. 5.10 we present some examples of positive results

of MSR, we omit the negative results since there are too few samples for a meaningful

overview.
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Figure 5.7: ROC curve showing differences between person detection performance using
a regular sliding window and MSR.

Figure 5.8: Positive results from using a HOG/SVM detector with MSR, positive results
at 30% of WSR after non-max suppression. Blue rectangles indicate avoided false positives
(improving performance); TP are marked with green.

5.1.4 Runtime performance

In order to evaluate MSR runtime speed, a comparison was performed with the traditional

sliding window HOG detector. We summarized the results on Table 5.3. Time was

calculated as the proportion of the total detection time for a specific WSR value of a

regular sliding window execution.

Expected gain, considering elimination of 80% and 70% of windows to be classified,

was 5x and 3.3x when compared to the same detector using no window selection (regular

sliding window). However, the results demonstrated that for both 19.9% and 29.6% of

WSR2, the actual runtime speed gain was smaller then 4.8x and 3.2x. This indicates that

MSR window selection mechanism imposed only a small processing overhead for each

window, which was compensated by the large number of windows discarded.

2The closest thresholds to 20% and 30% of WSR, respectively. Equivalent to 80% and 70% of window
elimination.
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Figure 5.9: Negative results from using a HOG/SVM detector with MSR, positive results
at 30% of WSR after non-max suppression. Yellow rectangles indicate FN caused by
MSR (affecting performance); blue rectangles indicate avoided false positives (improving
performance); TP are marked with green, while red rectangles are FP.

Figure 5.10: Positive results from using a Viola Jones detector with MSR, positive results
at 30% of WSR after non-max suppression. Blue rectangles indicate avoided false positives
(improving performance); TP are marked with green and FP with red.

5.1.5 Per-class MSR performance

Although MSR was capable of providing, in general, better performance for person de-

tection this does not hold for all object classes. As such, providing clear information

about what classes could generate better MSR results can shed light in which use cases

are better suited for MSR.

To evaluate a broad range of classes we chose Pascal VOC 2007 dataset, which contains

several different scenes containing many different objects. For this evaluation 19 object

classes (but excluding persons) were selected, which were divided into a set of 4952 images.

As it is not practical to use an object detector for each distinct object class, we consider

a hypothetical flawless classifier (groundtruth). That is, we evaluated how well the object

Table 5.3: Runtime speed proportion for each method

Method WSR Total Time Proportion Avg. Time Proportion Per Window

Regular Slide 100% 1.0000 1.0000
MSR β = 0.15 19.9% 0.1932 0.1996
MSR β = 0.15 29.6% 0.2852 0.2994
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Class with 20% WSR with 30% WSR

Cow 18.56% SFNR 8.38% SFNR
Bicycle 17.83% SFNR 11.53% SFNR
Aeroplane 14.35% SFNR 9.90% SFNR
Potted Plant 37.39% SFNR 24.36% SFNR
Chair 45.92% SFNR 35.38% SFNR
Horse 9.00% SFNR 5.90% SFNR
Sofa 26.15% SFNR 17.53% SFNR
Dining Table 33.15% SFNR 21.19% SFNR
Bird 24.14% SFNR 16.19% SFNR
Bus 17.70% SFNR 10.41% SFNR
Boat 24.30% SFNR 18.23% SFNR
Train 22.13% SFNR 11.88% SFNR
Cat 9.28% SFNR 6.81% SFNR
Bottle 31.56% SFNR 21.98% SFNR
TV Monitor 36.79% SFNR 23.80% SFNR
Dog 13.77% SFNR 6.44% SFNR
Sheep 22.56% SFNR 14.63% SFNR
Motorbike 18.54% SFNR 10.18% SFNR

Table 5.4: Comparison of MSR performance using a hypothetical flawless detector in the
Pascal VOC 2007 dataset.

itself stands out for window selection and not how it affected detector performance.

It is important to highlight that, when using a flawless object detector, the SFNR will

generally be higher than when using an actual object detector. This increase in SFNR

is a result of scenes with partially cropped, not illuminated or hidden objects, which

generate low saliency and are also hard for an object detector to find. In these cases, an

object detector would have a higher probability to generate a false negative, therefore,

it would not affect the SFNR as both object detector and window selection would have

been mistaken.

When evaluating object classes, a higher SFNR indicate that, in general, these objects

generate a smaller saliency. Thus, this small saliency makes window selection less cost

effective. Based on this information, the results from the evaluation of different object

classes test are presented in Table 5.4. These indicate that the worst performing object

classes are chair, potted plant, TV monitor and dining table, with, respectively, 45.92%,

37.39%, 36.79% and 33.15% of SFNR at 20% WSR. In contrast, the best performing

classes were horse with 9% SFNR, cat with 9.28% SFNR and dog with 13.77% SFNR;

also at 20% SFNR. Curiously, the three best performing classes were all animals while



72 Chapter 5. Experimental evaluation

the worst performing were man made objects mostly found within a house.

There are several hypothesis that could explain the aforementioned results. One of

such is that man made objects are included in an environment which was design to be

aesthetically pleasing (no strong colors). Other is that many of such man made objects

have transparent parts or regions that, when demonstrated in a fixed-size rectangular win-

dow, include too many non-salient parts from the surrounding environment, for instance,

a chair.

5.2 Analysis and closure

The MSR was designed to speed up object detection while maintaining or increasing

detection performance. This chapter evaluated several characteristics of our method in

order to understand its effect on an existing detector.

Our results indicated that, for person detection, MSR has been able to increase de-

tector performance and reduce runtime speed. Particularly, at 20% of WSR our method

obtained 3.17% of SFNR in LabelMe dataset. Yet, at 30% of WSR a result of 01.05% of

SFNR was achieved.

These results indicate that MSR could allow a detector to execute close to five times

faster with only a slight reduction in number of true positives. Moreover, this speed up

was shown to scale well to larger images, increasing its applicability.

As MSR can also discard regions which would generate false positives, in this way,

it also positively complements an existing detector overall performance. To reach this

conclusion, different object detectors where combined with MSR and thoroughly tested.

In all cases, MSR was capable to maintain or increase person detection performance.

Based on the analysis of person detection performance of different detectors, the

HOG/SVM has achieved the best performance among tested detectors. Thus, this combi-

nation of HOG, SVM and MSR can be used as an effective tool for faster person detection.

Throughout evaluation different object classes included in Pascal VOC 2007 shows

that, in general, MSR works best with animals and vehicles. On the other hand, man

made house objects (chair, table) did not perform as well. Further work is necessary to

objectively understand what object characteristics most affect saliency results.

The aforementioned tests and results indicate not only MSR can increase runtime

speed in some existing state-of-the-art detectors but also its performance. This perfor-

mance gain is a consequence of correctly discarding potential false positive detections,

avoiding errors; while minimizing the number of lost true position detections caused by



5.2. Analysis and closure 73

window selection.

Work is being done to further speed up MSR by doing part of the saliency detection

within the GPU. This will allow for better integration of our method with GPU-based

object detectors.





Chapter 6

Conclusion

This work described our approach to speed up image object detection by region selection

using saliency information. This way, regions with small visual importance, indicated by

the saliency detection method, were discarded before a full-fledged object detector was

used, saving processing time.

Region selection was achieved by our method, called multi-scale spectral residue

(MSR), which was based on a saliency detector called Spectral Residual (SR). MSR mod-

ified the original SR to better fit the purpose of region selection. These modifications

allow for saliency analysis over multiple scales, provide better region selection even when

objects inside a region have strong saliency intensity variations along its length, and also

provide an easy way to control the balance between the number of regions discarded and

the number of false negatives caused by this selection. Furthermore, to obtain better

results, contrast normalization was used on the image to enhance the edges of objects.

This normalization was necessary because SR has a strong dependence in object edges

for saliency detection.

Evaluation of our approach indicated that MSR was able to increase execution speed

of a HOG/SVM person detector while also increasing its ROC performance. For the Viola

and Jones’ detector, performance was also improved, showing that MSR can be adapted

to different detector types. Moreover, our choice for spectral residue was compared to

other state-of-the-art saliency detectors, showing that it indeed provide the best results

by a wide margin. To summarize, the results obtained shown that MSR allowed object

detectors to achieve not only faster detection but also better detection performance. The

detection performance gains are achieved when MSR discard regions which would generate

false positives in case a detector was applied at that particular region.

Among the restrictions of the MSR is that some object classes generate results which

are not as good as others, decreasing its usefulness for some classes. Particularly, man

made house objects were shown to generate less saliency than was expected, increasing

the number of false negatives (at a constant number of windows discarded).

To further enhance the results obtained by MSR, we plan the following enhancements:
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For short term we plan to determine what object particular characteristics most affect

saliency and also how to capture such information more reliably, creating a better

saliency method;

For long term our aim is to combine top-down information in our method. That is,

capture object-specific saliency information to help further reduce the number of

windows selected for detection.



Appendix A

Contrast normalization

Contrast normalization techniques help to bring an image contrast to a range more familiar

to our visual senses. Several techniques exist that achieve such normalization, which will

be described in following sections.

A.1 Histogram equalization

Contrast adjustment in image can be done using histogram equalization, and can reduce

effects caused by low illumination, as showed in Fig. A.1. This technique works by

increasing an image global contrast by better spreading out the pixel intensity values

along the entire intensity range.

To achieve such effect, the first step relies on finding the image intensity histogram,

Hi, using

(a) Before equalization (b) After equalization

Figure A.1: Differences between the image before and after histogram equalization; the
equalization was applied image-wide and the images presented are cropped around the
object of interest. Original images from LabelMe [Russell et al. 2008]

Hi =
n∑

y=1

m∑
x=1

(

{
1 if i = I(x, y)

0 otherwise
) (A.1)

where I is the input image. Then, the histogram is normalized to make the sum of all

bins 255 with
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Figure A.2: Demonstration of how a pixel is contrast normalized based on its immediate
neighborhood. Image from public domain.

H′
i =

H(i) ∗ 255∑255
n=1 H(i)

then, a cumulative sum of each bin is calculated with

H′′
i =

i∑
n=0

H′(n)

to generate the contrast equalized image

I ′x,y = H′′(I(x, y)) (A.2)

Histogram equalization can also be applied to color images, however it cannot be

directly applied in the RGB color channels.

A.2 Adaptive histogram equalization

Commonly, histogram equalization is applied over an entire image. However, this tends

to not enhance contrast in regions which are significantly brighter or darker than the rest

of the image. To solve this problem, the histogram equalization can be applied only in an

image subset, over a local area surrounding a given pixel. As such, adaptive histogram

equalization (AHE) allow for regions that are a statistically small portion of the image

space to be properly contrast normalized [Ketcham et al. 1974].

Adaptive histogram equalization is very similar to a common histogram equalization.

However, each pixel is contrast normalized based on a surrounding rectangular region.

This calculation based on a pixel neighborhood is shown in Figure A.2. The size of

the neighborhood controls the scale of normalization, smaller blocks increases contrast
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Figure A.3: Contrast mapping functions and each generated clipped histogram. Image
adapted from [Pizer et al. 1987].

amplification of finer image details.

Calculating the neighborhood for each pixel in an image can be time consuming. To

avoid such overhead a common optimization is to divide the image into a grid, then a given

pixel constrast normalization can be calculated from interpolation between its four closest

grid points. This allow for speed gains of over an order of magnitude when compared to

a naive implementation [Pizer et al. 1987].

The main disadvantage of AHE is that, in case a pixel neighborhood is mostly homo-

geneous, it will over-amplify existing noise. To tackle this shortcoming, Contrast Limited

Adaptive Histogram Equalization [Pizer et al. 1987] (CLAHE) was developed. The con-

trast limit is done by clipping the maximum height of the image intensity histogram.

The information which is clipped from histogram peaks is then redistributed equally

along the entire histogram range. This is done to allow the entire input range to be mapped

to the entire output range. After the redistribution, if any bin is over the contrast limit

the process is repeated until no bin is over the limit. The impact of contrast limiting can
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be seen in Figure A.3.

The contrast limit can be seen as controlling the slope between the mapping function

of input intensity to output intensity [Pizer et al. 1987].
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Fig. 1. From left to right: original image, saliency map, candidate regions in the saliency map. A very usual approach to search for an image object is
sliding window, which performs a dense search in image space. By using a multi-scale saliency map, we are able to tease out image regions which are
likely unnecessary for object search when sliding image windows. After that, a detector can be attached to only selected regions, allowing faster object
detectors.

Abstract—Accuracy in image object detection has been usually
achieved at the expense of much computational load. Therefore
a trade-off between detection performance and fast execution
commonly represents the ultimate goal of an object detector in
real life applications. In this present work, we propose a novel
method toward that goal. The proposed method was grounded
on a multi-scale spectral residual (MSR) analysis for saliency
detection. Compared to a regular sliding window search over the
images, in our experiments, MSR was able to reduce by 75% (in
average) the number of windows to be evaluated by an object
detector. The proposed method was thoroughly evaluated over a
subset of LabelMe dataset (person images), improving detection
performance in most cases.

Keywords-multi-scale spectral residue, saliency, person detec-
tion

I. INTRODUCTION

Image object localization has been reaching remarkable
results in real life applications. However, the more accurate
is the method, the heavier it is with respect to computational
cost. Achieving the best trade-off between detection perfor-
mance and computational cost usually represents a challenging
task. Indeed, in many practical situations, object detection
requires on-the-fly execution in order to be feasible in practice.
Among these time-critical tasks, there are: perception for
driver assistance [1], video traffic analysis [2] and surveillance
systems [3]. If we still consider the current availability of high
resolution images, which demands additional processing time,
the mentioned trade-off presents an even bigger challenge.

To cope with the aforementioned trade-off problem, many
methods have been proposed. Zhu et al. [4] and Viola and
Jones [5] have developed rejection cascades, reducing the time
required to detect non-objects. These works were based on the
so called sliding window search. Toward methods to avoid or
to reduce the overhead of a dense search, saliency detectors
have demonstrated promising results. As saliency detectors are
able to locate regions of interest in images, they can be used in
a broad spectrum of applications – from thumbnail generation
[6] to semantic colorization [7]. Examples of such saliency
methods are found in [8], which uses statistical properties
of natural scenes to select regions of interest, and also in
[9] based on the computation of saliency inspired on the
pre-attentive phase of human visual system, responsible for
drawing attention to specific parts of the visual stimuli.

The positive traits of saliency methods on search space
reduction allowed Ip et al. [10] to make a saliency analysis
in very large images in order to assist human visualization
by means of possible regions of interest (ROI). ROI are
found through a difference of Gaussians at multiple image
scales1. Likewise, Rutishauser et al. [11] proposed an object
recognition (among grocery items) based on the saliency
method found in [9] and a scale invariant feature transform
(SIFT) keypoint detector [12]. First, the saliency method is
applied to determine the most likely areas to have an object;
instead of thresholding the saliency map generated in the first

1Throughout the text, the words ‘octave’ and ‘scale’ are used interchange-
ably.



step, a region growing segmentation defines the best object
hypothesis; at the end, image object silhouette is delineated
by means of the keypoints detected over the salient areas.
Feng et al. [13] address the problem of object detection using
a sliding window over an image, specifying each window
saliency as the cost of composing it with remaining parts of
the image; therefore the image is segmented into regions based
on similarity; the difference between regions is calculated over
LAB histograms and spatial distances; these features are then
used to select the most differentiated windows which hopefully
present the most salient objects.

On the reduction of image search space, Lampert et al. [14]
propose the use of a branch-and-bound optimization applied
on the score of the classifier, which is used to separate input
space. The method was called Efficient Subwindow Search
(ESS). The target function is subjected to maximize the clas-
sification score whereas minimizing the number of windows
evaluated by a detector. In its original form, that method only
detects one object per image, but it can be modified to search
for multiple objects. ESS effectively reduces the number of
evaluated windows over the image in contrast to regular sliding
window based detectors [5], [15], [16].

Following all these ideas, the multi-scale spectral residue
(MSR) analysis aims to speed up sliding window-based object
detection by spectral residual analysis on multiple scales. Our
method relies on a sliding window approach based on the
image saliency with the goal of assigning a score to each
window before object detection stage (see Fig. ). Although
Feng et al. [13] also assign a saliency score to each window,
our approach has some important differences. MSR computes
an image-wise saliency following the rationale in [8], in a
more flexible way, allowing saliency detection in the original
image aspect ratio. Additionally, we explore properties of the
frequency domain to extract interesting regions in contrast
to the use of spatial properties such as composability of
segments. MSR differs from ESS in the requirements and
methodology. ESS avoids a dense detector search by using an
optimization method that requires a linear classifier and local
image descriptors such as [12]. MSR does not impose such
constraints, and can be used on most sliding window based
detectors by relying solely on an object saliency. Our approach
also avoids assumptions about an object shape to reduce the
search space, as such, it does not attempt to segment an object
based on salient locations, as in Rutishauser et al. [11]; instead,
MSR indicates regions of interest and relies on a classifier
for actual object detection and localization. Recent solutions
of rejection cascades [4] [5] in a sliding window search can
easily be integrated to MSR. This latter can be combined with
MSR in order to achieve faster processing time.

This work is structured as follows: an overview of saliency
detection methods is given in Section II. Section III describes
MSR and a methodology to evaluate the impact of window
selection on detector performance. In Section IV, the MSR
is compared to other saliency methods, and its runtime and
detection performance are measured over a person dataset.
Finally, overall conclusions are drawn in Section V.

Window Selection Step

Calculate

 Saliency

Select each

octave

Several octaves of

input image

Apply object detector

on selected windows

Select candidate 

windows

Return selected

windows

Fig. 2. Overview of MSR. For each octave of the original image, the saliency
map is computed, and a sliding window is applied on the saliency map.
Candidate windows are selected according to their scores given by a quality
function. Finally, an object detector is applied only in the candidate windows.

Contributions: Our contribution resides in a novel
method, called MSR, with the aim of achieving a better trade-
off between the number of windows selected to be evaluated
by a detector, and the number of miss detections. MSR has
demonstrated an average reduction of 75% of windows to be
evaluated, while keeping or improving detection performance.

A. Proposed method at a glance

When performing a dense search for an object, only a
small subset of the image might contain objects. However,
sliding window based detectors are only able to provide image
object localization after running a classification function over
each window on multiple orientations and octaves (scales).
For that, the use of a full-fledged object detector implies
an expensive operation, requiring preprocessing, feature ex-
traction and classification. In order to reduce the number of
windows which will be evaluated by a detector, we propose
a bottom-up saliency approach to select windows of interest
before running the detector in each window. Although MSR
has been motivated by [8], it was conceived to overcome some
limitations of that method when used on uncontrolled scenes.
These improvements are listed below:

1) resizing each image octave by a constant resizing factor
– 15% of its size, instead of making assumptions about
object scale by using a fixed image size for saliency
detection. This change allows search of salient objects
at multiple scales;

2) choice of threshold k for region selection is not depen-
dent on each image saliency map, but on a constant
global value based on a trade-off between selected
regions and false negatives (FN) in the classification.
In [8], the threshold is calculated as k = 3 ·E(S(x)), or
three times the mean saliency map S(x) intensity. How-



ever, this latter formulation incorrectly regards objects
in cluttered images (many objects) as non-salient.

3) saliency quality in a region is calculated from a window-
wise saliency mean, instead of using pixel values indi-
vidually as in [8], allowing detection of entire objects
even when their saliency is non-uniform along its length.

Instead of relying on the object detector to choose the most
likely image region to contain an object (just after obtaining
the saliency map), windows are slid over an integral saliency
space. This latter step corresponds to computing the integral
image of the pixels in the saliency space in the same way
as Viola and Jones [5]. After that, a quality function f(·) is
applied at each window w, providing a score. The score of
a given window is calculated using the mean of its saliency
intensity, and a window is selected if its score is greater than
or equal to a threshold k. A higher k selects smaller number
of windows, while potentially missing more true positive (TP)
detections in the further steps of the method. Conversely, as
value of k gets lower, MSR approaches to a method based
on regular sliding window search. An overview of MSR
mechanism for window selection is summarized in Fig. 2.

II. OVERVIEW OF SALIENCY DETECTION APPROACHES

An object draws more attention when it has a strong contrast
in relation to its neighbourhood, objects such as traffic signs or
a stop light were created to explore this property in order to be
perceived faster than surrounding objects. While an attention
mechanism can help a person focus on specific objects in a
scene, in a similar way, an algorithm capable of detecting
salient objects in images must search for characteristics such
as visual uniqueness, rarity and unpredictability [17]. This is
so in order to correctly highlight image regions which demand
extra attention. Following these ideas, we briefly summarize
some of saliency detectors:

Itti’s method (IT): Among the first salient methods, a
biologically inspired approach was developed by Itti et al.
[9]. In that approach, saliency of a given pixel is calculated
based on its uniqueness in relation to local surroundings.
Uniqueness is defined on the analysis of color, intensity and
orientation over multiple scales. After that, these features are
then normalized and combined in a way where channels with
larger contrasts are preferred.

Graph based (GB) visual saliency: Similarly to Itti,
Harel et al. [18] form activation maps from particular fea-
ture channels, and normalize them to better highlight salient
regions.

Frequency tuned (FT) saliency region detection: Instead
of using local information to define the saliency, Achanta et al.
[19] define saliency of a pixel as its distance from the image
pixel mean on LAB space, formally represented as

Sa(x, y) = ||Iπ − I(x, y)||2 , (1)

where Iπ is the mean image feature vector, I(x, y) is the
original pixel value, || · ||2 represents an L2 norm where each
pixel is a feature vector of type [L, a, b].

Luminance contrast (LC): Also using global contrast,
Zhai and Shah [20] developed a method for pixel-level saliency
detection using the contrast of a pixel with respect to the others
in a scene. It is given by

Sz(Ik) =
∑
∀Ii∈I

||Ik − Ii|| , (2)

where Ii and Ik are pixels in the image and || · || represents
the Euclidean distance.

Spectral residual (SR): Similar to global methods, fre-
quency based approaches also explore properties of the entire
image. Hou and Zhang [8] used these properties based on
1/f ’s law, which states that an ensemble of images on the
Fourier Spectrum obeys the distribution

E{A(f)} ∝ 1/f , (3)

where A(f) is the amplitude averaged over orientations, and f
is a given spectrum in the frequency domain. Whilst objects do
not follow properties of natural scenes, detection of potential
salient points is based on finding statistical singularities on the
spectrum of an image. These singularities are called spectral
residues.

III. PRUNING WINDOWS BY MULTI-SCALE SPECTRAL
RESIDUE

Saliency detectors are able to associate a degree of local or
global uniqueness for each image pixel (or group of pixels).
This information is useful to help pruning undesired windows.
In this regard, during a search for objects via sliding windows,
the capability to choose whether a detector will evaluate a
particular window or ignore it (based on its object likelihood)
can bring benefits to speed up the classification task in further
steps.

Saliency detectors face additional complexities when deal-
ing with uncontrolled scenes, such as variations in object
(color, size, illumination and noise). Particularly, it is note-
worthy that spectral residual (SR) analysis [8] is susceptible
to those factors when selecting image ROI, since an object
may have intense intra-variability. To avoid that, in MSR,
saliency is measured in a per-window basis, and the saliency of
a window is defined as the mean intensity of its salient pixels,
enabling higher resilience to variability of salient pixels.

Another limitation of SR in the context of aiding object
detectors is its threshold for region selection, defined as
k = 3 ∗ E(S(x)) where E(S(x)) denotes the mean value
of the saliency map and k the threshold. Such scheme expects
that images have but a small number of salient regions. If
it is not the case, that method potentially excludes important
objects because of the high lower bound. Given that situation,
we define the threshold k as a constant value throughout the
entire collection of images, representing an average trade-off
between the number of selected windows and false negatives
(FN) caused by window selection.

From the aforementioned improvements, summarized on
Fig. 3, the underlying concepts required for multi-scale anal-
ysis have been conceived in Section III-A.



Fig. 3. Comparison between SR and MSR. From left to right: the original image, SR saliency map, region selection using SR formulation in original image,
and MSR window selection at a particular octave.

(a) SR with image at 15% of its size

(b) SR with image at 7% of its size

Fig. 4. Differences in saliency at multiple scales. In 4a, SR was calculated
in 15% of the original image size, generating strong reactions on mostly
small objects; in 4b, using 7% of the original image size, bigger objects were
also selected. The image reduction examples demonstrate how the image size
influences on the scale of saliency detection, which will be tuned to best select
objects in a given octave.

A. Multi-scaling the spectral residue

Most saliency methods are able to detect objects of different
sizes. Methods such as [9] and [18] make direct use of
feature analysis at multiple image scales to achieve that result.
In contrast, SR searches objects at a single scale, which is
specified based on a estimation of common object sizes over
normal visual conditions [8]. For that, SR cannot be used
in an uncontrolled multi-scale environment, as the saliency
detector will not search for objects at the same scale as the
object detector. Because of that, it was necessary to establish
a connection between the search scale of the object detector
and the saliency detector.

The scale of salient objects in SR is implicitly defined by
the image size. Therefore smaller objects are more salient on
bigger images, because the smaller an image gets, the bigger
are the objects that become salient, as depicted on Fig. 4. In
this case, searching for salient objects with various sizes has a
strong relation to how a sliding-window based object detector

searches for bigger objects in an image using a fixed size
window. This search is accomplished by resizing an image
at a fixed compound rate, such as Ii+1 = R(Ii, s), where R
represents the resize function, Ii denotes the i-th image octave
and s the resizing factor; the detector thus slides the detection
window over each octave i.

As we focus on detection of saliency and objects within
the same search scale, using a fixed-size window, we may
conclude that from a particular octave Ii, there is a constant
resizing factor β capable of adjusting the two detectors to
the same scale. Given a value of β, saliency detection will be
executed on each octave i over a reduced image, R(Ii, β), with
its color histogram normalized. This histogram normalization
is applied to increase object contrast, enhancing the overall
saliency of the object against the scene. Another practical
use of further resizing the image using β is to reduce the
computational load of saliency calculation. Defining a specific
value for β will depend on factors such as: object of interest,
scale of search and saliency detector. A β value of 0.15 was
chosen based on experimental data. The choice of this value
is discussed in detail in Section III-C.

After obtaining the image octaves, and consequently the
generated saliency maps for each octave, a quality value f(w)
for each window w was calculated from its mean saliency
intensity. To speed up mean computation, the quality value
f(w) is calculated after computing the integral image of the
saliency map (having then mean calculation with constant time
complexity).

B. Determining the quality function threshold

Proper evaluation of window selection impact on perfor-
mance was done by means of an analysis of the window
selection rate (WSR) and saliency false negative rate (SFNR).
WSR denotes the number of windows selected for further
processing, while SFNR represents how many objects the
detector failed to recognize after MSR pruning.

Both WSR and SFNR depend on a threshold k which
represents a minimum score for a window to be selected for
actual object detection. Thus, given that W is the set of all
windows generated from sliding on the entire collection of
images at every scale and M the set of all objects of interest
from this same collection of images, we can calculate the
trade-off between WSRk and SFNRk in a five-step process.
First, we define the set of selected windows Sk as



Sk = {w ∈ W | f(w) ≥ k} , (4)

where f(w) is the quality value of a window w and k is the
threshold for window selection. Given Sk, it is possible to
calculate the window selection rate with

WSRk =
n(Sk)

n(W )
, (5)

where n(·) denotes cardinality of a set. To calculate the
SFNRk one should enumerate for each object j ∈ M the
number of windows in which the object was correctly matched,
given by

Ck,j = {w ∈ Sk | o(w) = j} , (6)

where o(w) is a function that, in case an object exists at
window w, and this is correctly classified by a detector, returns
the matched object from set M ; otherwise o(w) returns any
element /∈ M. From that, its trivial to find the set of objects
detected, Fk, defined as

Fk = {j ∈ M | n(Ck,j) ≥ 1} . (7)

Finally, in order to calculate how many miss detections were
caused by the saliency (SFNR), we use

SFNRk =
n(Fkmin)− n(Fk)

n(Fkmin)
, (8)

where kmin is the minimum threshold value, which guarantees
Skmin = W . Thus, to generate a full trade-off curve, this
process is repeated for each k ∈ K where K is the set of
unique window scores.

C. Parameter choice

The proper choice of value for β will change according
to the scale and characteristics of a given object. For person
detection, the best value for β was found to be 0.15. This
was achieved over the LabelMe [21] dataset for persons (see
Section IV-A for more detail). Figure 5 shows the trade-off of
WSR and SFNR for different values of β.

A possible consideration is to use the parameter β only in
the original image (full resolution). It would save processing
time dedicated for calculation of the saliency at each scale.
However, multi-scale methods had dominant superior perfor-
mance in our tests, as can be noted in Fig. 6.

Henceforth, to facilitate result analysis, we focus on the
operating points of 20% and 30% of WSR. The choice of
these operating points intends to evaluate a preferable runtime
performance (20% of WSR) in spite of detection performance,
or to keep detection performance (30% of WSR) with accept-
able speed gains.
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Fig. 5. Trade-off curve for person detection using different β values. When
the curve is closer to the origin it is better.
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is closer to the origin it is better.

IV. EXPERIMENTAL EVALUATION

A. Methodology

Evaluation of MSR was accomplished by a four-step analy-
sis: (i) comparing the detection performance considering sev-
eral saliency detection methods using the same sliding window
parametrization in a multi-scale analysis; (ii) analysing MSR
scalability with respect to detection, i.e., how it behaves on
different image resolutions; (iii) how MSR affects a detector
receiver operating characteristic (ROC) curve with respect to
a regular sliding window, and, finally, (iv) impact on detection
runtime speed with different parameters.

To standardize comparisons, a set of 330 images was
extracted from the LabelMe [21] dataset. Image sizes range
from 320 by 240 to 2592 by 1944. Additionally, the dataset
encompasses several environments, including city, snow, forest
and river, where each scene contains at least one person.

For all analyses using the aforementioned dataset, a com-



TABLE I
SFNR FOR EACH METHOD AT 20% OF WSR

β

Method 0.15 0.25 0.50 1.00

MSR 08.73% 11.38% 17.99% 17.99%
LC 93.92% 93.92% 94.18% 94.43%
FT 87.83% 82.54% 76.46% 77.25%
GB - - - 47.09%
IT - - - 38.89%

bination of histogram of oriented gradients (HOG) [16] and
Support Vector Machine (SVM) was used as the method
to classify persons. The rationale of using HOG/SVM was
not only because it is a state-of-the-art detector, but also
to facilitate comparison with other future search reduction
methods, since its source code is publicly available. Our
HOG/SVM detector was trained using a person dataset distinct
from the one created with images from LabelMe. Addtionally,
for the sliding window, the detector was set up with window
size of 64 by 128 pixels, a stride of 8 pixels horizontal-wise,
and 16 pixels vertical-wise, and image resizing rate of 0.96,
for each octave.

It is noteworthy that, for analysis (i), two state-of-the-art
saliency methods have not been included – [22] and [23].
The former, because the saliency detection is concentrated
mostly on images with a single and clear salient object;
the latter, because of its very slow runtime speed. In (ii),
we examine how MSR performance changes over different
image resolutions and how each image octave contributes to
its results. This experiment is important to considering recent
increases in availability of high resolution images. In (iii), we
built a ROC curve to show the effects of MSR on a person
detector at different WSR configurations in comparison to a
normal sliding window. Finally, in (iv), we evaluate if the
number of windows discarded before detection is sufficient
to compensate for the additional processing required by MSR.

B. Comparison of saliency methods in a multi-scale structure

A comparison of MSR against other state-of-the-art methods
in the same multi-scale structure is presented in Fig. 7. As the
results represent only the best configuration of each method,
a more detailed information is organized on Table I and II.

In these experiments, both IT [9] and GB [18] were only
evaluated using the original octave size, with no β scaling,
as these methods already perform analysis at multiple scales
internally. We also did not compare MSR with the original SR
[8] since the latter one was designed to operate on a single
image size.

The results indicate that MSR achieved superior perfor-
mance on almost the entire trade-off curve. In addition, SFNR
at 20% and 30% of WSR were at least ten times better when
compared to other methods. Yet, at 50% of WSR, the SFNR is
close to zero (less than 0.3%), which indicates that a detector
could process images twice as fast with a negligible loss in
TP.
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TABLE II
SFNR FOR EACH METHOD AT 30% OF WSR

β

Method 0.15 0.25 0.50 1.00

MSR 02.91% 02.64% 06.08% 05.55%
LC 86.24% 86.24% 85.98% 87.04%
FT 70.37% 64.29% 59.79% 62.69%
GB - - - 33.86%
IT - - - 23.81%

The MSR and IT methods had the best overall trade-off
between WSR and SFNR. Both SR and IT were among the
worst on recent evaluation of general purpose saliency detec-
tion found in [17]. Some possible causes of this discrepancy
are:

1) saliency detection is done in a single scale in [17], while
in our tests the saliency was recalculated at every octave.
This provided a better performance for most methods;

2) differences in scene selection. The dataset used in [17]
was gathered by [19] with images containing mostly
uncluttered objects and natural background. In our tests,
images were extracted from LabelMe [21], wherein the
images contain a wide range of locations and varying
degrees of clutter;

3) little background information on some images (large
objects).

C. Scalability

We compare how well MSR can select image windows
at different starting image resolutions in Fig. 8. From this
information, we can conclude that increasing image size allows
for an even better trade-off between SFNR and WSR.

To further confirm the scalability of MSR on larger res-
olutions, we compare its ability to eliminate windows at a
fixed threshold in several octaves in Fig. 9, showing that
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larger size images contribute for better WSR. In this test,
the number of windows in each octave is calculated with
1 + [(wi − ww)/sh] ∗ [(hi − hw)/sv], where wi and hi are
the image width and height, respectively, ww and hw are the
window width and height, sh is the horizontal stride and sv
is the vertical stride.

D. Detection performance

Comparison between an object detector with and without
MSR is presented on Fig. 10. In the tests, MSR at 20% of WSR
provided greater TPR than regular sliding window within the
range of 0 and 1.48 of FPPI. At 30% of WSR and within its
range of 0 and 1.98 of FPPI, our method also obtained larger
TPR than a regular sliding window approach. The maximum
TPR of a regular sliding window is 0.71, while for MSR at
30% of WSR the maximum is 0.69. Even though the difference
was small to match the actual maximum TPR of a regular
sliding window, MSR operated at least on 50% of WSR, which
still represents a twice as fast image processing with only a
negligible performance loss (less than 0.3%).
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Some examples of positive and negative results at 30% of
WSR can be found, respectively, on Fig. 11 and Fig. 12.

E. Runtime performance

In order to evaluate MSR runtime speed, a comparison was
performed with the traditional sliding window HOG detector.
We summarized the results on Table III. Time was calculated
as the proportion of the total detection time for a specific WSR
value of a regular sliding window execution.

Expected gain, considering elimination of 80% and 70%
of windows to be classified, was 5x and 3.3x. However, the
results demonstrated that for both 19.9% and 29.6% of SWR2,
the actual runtime speed gain was smaller then 4.8x and
3.2x. This indicates that MSR window selection mechanism
imposed only a small processing overhead for each window,
which was compensated by the large number of windows
discarded.

TABLE III
RUNTIME SPEED PROPORTION FOR EACH METHOD

Method WSR Total Time
Proportion

Avg. Time Propor-
tion Per Window

Regular Slide 100% 1.0000 1.0000
MSR β = 0.15 19.9% 0.1932 0.1996
MSR β = 0.15 29.6% 0.2852 0.2994

V. CONCLUSION

This work presented a method to speed up sliding window-
based object detectors by multi-scale spectral residual analysis,
named MSR. This way, MSR avoids using a full-fledged object
detector on windows unlikely to contain objects, speeding up
detection. In our experiments, MSR was able to provide better
or similar detection performance, and faster detection with
scalability to increasing image resolutions. Furthermore, our

2The closest thresholds to 20% and 30% of SWR, respectively. Equivalent
to 80% and 70% of window elimination.



Fig. 11. MSR positive results at 30% of WSR after non-max suppression. Blue rectangles indicate avoided false positives (improving performance); TP are
marked with green.

Fig. 12. MSR negative results at 30% of WSR after non-max suppression. Yellow rectangles indicate FN caused by MSR (affecting performance); blue
rectangles indicate avoided false positives (improving performance); TP are marked with green, while red rectangles are FP.

choice for spectral residual analysis has demonstrated compar-
atively better results on the task of faster object detection than
other state-of-the-art saliency methods. Although the initial
goal was of faster execution, we plan to modify MSR to take
object-specific spectral information into account in order to
improve even more detection performance.
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