Person re-identification

The automatic person re-identification (re-id) problem resides in matching an unknown person image to a database of previously labeled images of people. Among several issues to cope with this research field, person re-id has to deal with person appearance and environment variations. As such, discriminative features to represent a person identity must be robust regardless those variations. Comparison among two image features is commonly accomplished by distance metrics. Although features and distance metrics can be handcrafted or trainable, the latter type has demonstrated more potential to breakthroughs in achieving state-of-the-art performance over public data sets. A recent paradigm that allows to work with trainable features is deep learning, which aims at learning features directly from raw image data. Although deep learning has recently achieved significant improvements in person re-identification, found on some few recent works, there is still room for learning strategies, which can be exploited to increase the current state-of-the-art performance.